Papers
Topics
Authors
Recent
2000 character limit reached

Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence

Published 13 Dec 2022 in q-fin.CP and cs.AI | (2301.04020v1)

Abstract: Quantitative investment (quant'') is an interdisciplinary field combining financial engineering, computer science, mathematics, statistics, etc. Quant has become one of the mainstream investment methodologies over the past decades, and has experienced three generations: Quant 1.0, trading by mathematical modeling to discover mis-priced assets in markets; Quant 2.0, shifting quant research pipeline from smallstrategy workshops'' to large alpha factories''; Quant 3.0, applying deep learning techniques to discover complex nonlinear pricing rules. Despite its advantage in prediction, deep learning relies on extremely large data volume and labor-intensive tuning ofblack-box'' neural network models. To address these limitations, in this paper, we introduce Quant 4.0 and provide an engineering perspective for next-generation quant. Quant 4.0 has three key differentiating components. First, automated AI changes quant pipeline from traditional hand-craft modeling to the state-of-the-art automated modeling, practicing the philosophy of ``algorithm produces algorithm, model builds model, and eventually AI creates AI''. Second, explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black-boxes, and explains complicated and hidden risk exposures. Third, knowledge-driven AI is a supplement to data-driven AI such as deep learning and it incorporates prior knowledge into modeling to improve investment decision, in particular for quantitative value investing. Moreover, we discuss how to build a system that practices the Quant 4.0 concept. Finally, we propose ten challenging research problems for quant technology, and discuss potential solutions, research directions, and future trends.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.