Asymptotic Theory for Two-Way Clustering (2301.03805v3)
Abstract: This paper proves a new central limit theorem for a sample that exhibits two-way dependence and heterogeneity across clusters. Statistical inference for situations with both two-way dependence and cluster heterogeneity has thus far been an open issue. The existing theory for two-way clustering inference requires identical distributions across clusters (implied by the so-called separate exchangeability assumption). Yet no such homogeneity requirement is needed in the existing theory for one-way clustering. The new result therefore theoretically justifies the view that two-way clustering is a more robust version of one-way clustering, consistent with applied practice. In an application to linear regression, I show that a standard plug-in variance estimator is valid for inference.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.