Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Searching for Ultralight Dark Matter Conversion in Solar Corona using Low Frequency Array Data (2301.03622v2)

Published 9 Jan 2023 in hep-ph, astro-ph.CO, astro-ph.HE, and hep-ex

Abstract: Ultralight dark photons and axions are well-motivated hypothetical dark matter candidates. Both dark photon dark matter and axion dark matter can resonantly convert into electromagnetic waves in the solar corona when their mass is equal to the solar plasma frequency. The resultant electromagnetic waves appear as monochromatic signals within the radio-frequency range with an energy equal to the dark matter mass, which can be detected via radio telescopes for solar observations. Here we show our search for converted monochromatic signals in the observational data collected by the high-sensitivity Low Frequency Array (LOFAR) telescope and establish an upper limit on the kinetic mixing coupling between dark photon dark matter and photon, which can reach values as low as $10{-13}$ within the frequency range of $30-80$ MHz. This limit represents an improvement of approximately one order of magnitude better than the existing constraint from the cosmic microwave background observation. Additionally, we derive an upper limit on the axion-photon coupling within the same frequency range, which is better than the constraints from Light-Shining-through-a-Wall experiments while not exceeding the CERN Axion Solar Telescope (CAST) experiment or other astrophysical bounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (127)
  1. LUX Collaboration, D. S. Akerib et al., “Results from a search for dark matter in the complete LUX exposure,” Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].
  2. XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
  3. PandaX-4T Collaboration, Y. Meng et al., “Dark Matter Search Results from the PandaX-4T Commissioning Run,” Phys. Rev. Lett. 127 no. 26, (2021) 261802, arXiv:2107.13438 [hep-ex].
  4. J. Redondo and M. Postma, “Massive hidden photons as lukewarm dark matter,” JCAP 02 (2009) 005, arXiv:0811.0326 [hep-ph].
  5. A. E. Nelson and J. Scholtz, “Dark Light, Dark Matter and the Misalignment Mechanism,” Phys. Rev. D84 (2011) 103501, arXiv:1105.2812 [hep-ph].
  6. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, “WISPy Cold Dark Matter,” JCAP 1206 (2012) 013, arXiv:1201.5902 [hep-ph].
  7. P. W. Graham, J. Mardon, and S. Rajendran, “Vector Dark Matter from Inflationary Fluctuations,” Phys. Rev. D93 no. 10, (2016) 103520, arXiv:1504.02102 [hep-ph].
  8. B. Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. 166B (1986) 196–198.
  9. K. R. Dienes, C. F. Kolda, and J. March-Russell, “Kinetic mixing and the supersymmetric gauge hierarchy,” Nucl. Phys. B 492 (1997) 104–118, arXiv:hep-ph/9610479.
  10. S. A. Abel and B. W. Schofield, “Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking,” Nucl. Phys. B 685 (2004) 150–170, arXiv:hep-th/0311051.
  11. S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze, and A. Ringwald, “Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology,” JHEP 07 (2008) 124, arXiv:0803.1449 [hep-ph].
  12. S. A. Abel, J. Jaeckel, V. V. Khoze, and A. Ringwald, “Illuminating the Hidden Sector of String Theory by Shining Light through a Magnetic Field,” Phys. Lett. B 666 (2008) 66–70, arXiv:hep-ph/0608248.
  13. M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, “Naturally Light Hidden Photons in LARGE Volume String Compactifications,” JHEP 11 (2009) 027, arXiv:0909.0515 [hep-ph].
  14. G. Alonso-Álvarez, T. Hugle, and J. Jaeckel, “Misalignment \& Co.: (Pseudo-)scalar and vector dark matter with curvature couplings,” JCAP 02 (2020) 014, arXiv:1905.09836 [hep-ph].
  15. K. Nakayama, “Vector Coherent Oscillation Dark Matter,” JCAP 1910 (2019) 019, arXiv:1907.06243 [hep-ph].
  16. K. Nakayama, “Constraint on Vector Coherent Oscillation Dark Matter with Kinetic Function,” JCAP 08 (2020) 033, arXiv:2004.10036 [hep-ph].
  17. Y. Ema, K. Nakayama, and Y. Tang, “Production of Purely Gravitational Dark Matter: The Case of Fermion and Vector Boson,” JHEP 07 (2019) 060, arXiv:1903.10973 [hep-ph].
  18. E. W. Kolb and A. J. Long, “Completely dark photons from gravitational particle production during the inflationary era,” JHEP 03 (2021) 283, arXiv:2009.03828 [astro-ph.CO].
  19. B. Salehian, M. A. Gorji, H. Firouzjahi, and S. Mukohyama, “Vector dark matter production from inflation with symmetry breaking,” Phys. Rev. D 103 no. 6, (2021) 063526, arXiv:2010.04491 [hep-ph].
  20. A. Ahmed, B. Grzadkowski, and A. Socha, “Gravitational production of vector dark matter,” JHEP 08 (2020) 059, arXiv:2005.01766 [hep-ph].
  21. Y. Nakai, R. Namba, and Z. Wang, “Light Dark Photon Dark Matter from Inflation,” JHEP 12 (2020) 170, arXiv:2004.10743 [hep-ph].
  22. K. Nakayama and Y. Tang, “Gravitational Production of Hidden Photon Dark Matter in Light of the XENON1T Excess,” Phys. Lett. B 811 (2020) 135977, arXiv:2006.13159 [hep-ph].
  23. H. Firouzjahi, M. A. Gorji, S. Mukohyama, and B. Salehian, “Dark photon dark matter from charged inflaton,” JHEP 06 (2021) 050, arXiv:2011.06324 [hep-ph].
  24. M. Bastero-Gil, J. Santiago, L. Ubaldi, and R. Vega-Morales, “Dark photon dark matter from a rolling inflaton,” JCAP 02 no. 02, (2022) 015, arXiv:2103.12145 [hep-ph].
  25. H. Firouzjahi, M. A. Gorji, S. Mukohyama, and A. Talebian, “Dark matter from entropy perturbations in curved field space,” Phys. Rev. D 105 no. 4, (2022) 043501, arXiv:2110.09538 [gr-qc].
  26. T. Sato, F. Takahashi, and M. Yamada, “Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism,” JCAP 08 no. 08, (2022) 022, arXiv:2204.11896 [hep-ph].
  27. R. T. Co, A. Pierce, Z. Zhang, and Y. Zhao, “Dark Photon Dark Matter Produced by Axion Oscillations,” Phys. Rev. D 99 no. 7, (2019) 075002, arXiv:1810.07196 [hep-ph].
  28. J. A. Dror, K. Harigaya, and V. Narayan, “Parametric Resonance Production of Ultralight Vector Dark Matter,” Phys. Rev. D 99 no. 3, (2019) 035036, arXiv:1810.07195 [hep-ph].
  29. M. Bastero-Gil, J. Santiago, L. Ubaldi, and R. Vega-Morales, “Vector dark matter production at the end of inflation,” JCAP 04 (2019) 015, arXiv:1810.07208 [hep-ph].
  30. P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, and F. Takahashi, “Relic Abundance of Dark Photon Dark Matter,” Phys. Lett. B 801 (2020) 135136, arXiv:1810.07188 [hep-ph].
  31. R. T. Co, K. Harigaya, and A. Pierce, “Gravitational waves and dark photon dark matter from axion rotations,” JHEP 12 (2021) 099, arXiv:2104.02077 [hep-ph].
  32. K. Nakayama and W. Yin, “Hidden photon and axion dark matter from symmetry breaking,” JHEP 10 (2021) 026, arXiv:2105.14549 [hep-ph].
  33. A. J. Long and L.-T. Wang, “Dark Photon Dark Matter from a Network of Cosmic Strings,” Phys. Rev. D 99 no. 6, (2019) 063529, arXiv:1901.03312 [hep-ph].
  34. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443. [,328(1977)].
  35. R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791–1797.
  36. S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
  37. F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
  38. J. Ipser and P. Sikivie, “Can Galactic Halos Made of Axions?,” Phys. Rev. Lett. 50 (1983) 925.
  39. P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206 [hep-th].
  40. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B120 (1983) 127–132. [,URL(1982)].
  41. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B120 (1983) 133–136. [,URL(1982)].
  42. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B120 (1983) 137–141. [,URL(1982)].
  43. A. Vilenkin and A. E. Everett, “Cosmic strings and domain walls in models with goldstone and pseudo-goldstone bosons,” Physical Review Letters 48 no. 26, (1982) 1867.
  44. P. Sikivie, “Axions, domain walls, and the early universe,” Physical Review Letters 48 no. 17, (1982) 1156.
  45. P. Sikivie, “Experimental Tests of the Invisible Axion,” Phys. Rev. Lett. 51 (1983) 1415–1417. [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
  46. P. Sikivie, “Detection Rates for ’Invisible’ Axion Searches,” Phys. Rev. D 32 (1985) 2988. [Erratum: Phys.Rev.D 36, 974 (1987)].
  47. L. B. Okun, “LIMITS OF ELECTRODYNAMICS: PARAPHOTONS?,” Sov. Phys. JETP 56 (1982) 502. [Zh. Eksp. Teor. Fiz.83,892(1982)].
  48. K. Van Bibber, N. R. Dagdeviren, S. E. Koonin, A. Kerman, and H. N. Nelson, “Proposed experiment to produce and detect light pseudoscalars,” Phys. Rev. Lett. 59 (1987) 759–762.
  49. H. An, M. Pospelov, J. Pradler, and A. Ritz, “Direct Detection Constraints on Dark Photon Dark Matter,” Phys. Lett. B 747 (2015) 331–338, arXiv:1412.8378 [hep-ph].
  50. H. An, M. Pospelov, and J. Pradler, “Dark Matter Detectors as Dark Photon Helioscopes,” Phys. Rev. Lett. 111 (2013) 041302, arXiv:1304.3461 [hep-ph].
  51. A. Caputo, A. J. Millar, C. A. J. O’Hare, and E. Vitagliano, “Dark photon limits: A handbook,” Phys. Rev. D 104 no. 9, (2021) 095029, arXiv:2105.04565 [hep-ph].
  52. C. O’Hare, “cajohare/axionlimits: Axionlimits.” https://cajohare.github.io/AxionLimits/, July, 2020.
  53. S. D. McDermott and S. J. Witte, “Cosmological evolution of light dark photon dark matter,” Phys. Rev. D101 no. 6, (2020) 063030, arXiv:1911.05086 [hep-ph].
  54. Fermi-LAT Collaboration, M. Ajello et al., “Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope,” Phys. Rev. Lett. 116 no. 16, (2016) 161101, arXiv:1603.06978 [astro-ph.HE].
  55. M. Meyer and T. Petrushevska, “Search for Axionlike-Particle-Induced Prompt γ𝛾\gammaitalic_γ-Ray Emission from Extragalactic Core-Collapse Supernovae with the F⁢e⁢r⁢m⁢i𝐹𝑒𝑟𝑚𝑖Fermiitalic_F italic_e italic_r italic_m italic_i Large Area Telescope,” Phys. Rev. Lett. 124 no. 23, (2020) 231101, arXiv:2006.06722 [astro-ph.HE]. [Erratum: Phys.Rev.Lett. 125, 119901 (2020)].
  56. M. S. Pshirkov and S. B. Popov, “Conversion of Dark matter axions to photons in magnetospheres of neutron stars,” J. Exp. Theor. Phys. 108 (2009) 384–388, arXiv:0711.1264 [astro-ph].
  57. F. P. Huang, K. Kadota, T. Sekiguchi, and H. Tashiro, “Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources,” Phys. Rev. D 97 no. 12, (2018) 123001, arXiv:1803.08230 [hep-ph].
  58. A. Hook, Y. Kahn, B. R. Safdi, and Z. Sun, “Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres,” Phys. Rev. Lett. 121 no. 24, (2018) 241102, arXiv:1804.03145 [hep-ph].
  59. B. R. Safdi, Z. Sun, and A. Y. Chen, “Detecting Axion Dark Matter with Radio Lines from Neutron Star Populations,” Phys. Rev. D 99 no. 12, (2019) 123021, arXiv:1811.01020 [astro-ph.CO].
  60. J.-F. Fortin and K. Sinha, “X-Ray Polarization Signals from Magnetars with Axion-Like-Particles,” JHEP 01 (2019) 163, arXiv:1807.10773 [hep-ph].
  61. J.-F. Fortin and K. Sinha, “Constraining Axion-Like-Particles with Hard X-ray Emission from Magnetars,” JHEP 06 (2018) 048, arXiv:1804.01992 [hep-ph].
  62. D. Noordhuis, A. Prabhu, S. J. Witte, A. Y. Chen, F. Cruz, and C. Weniger, “Novel Constraints on Axions Produced in Pulsar Polar-Cap Cascades,” Phys. Rev. Lett. 131 no. 11, (2023) 111004, arXiv:2209.09917 [hep-ph].
  63. D. K. Hong, C. S. Shin, and S. Yun, “Cooling of young neutron stars and dark gauge bosons,” Phys. Rev. D 103 no. 12, (2021) 123031, arXiv:2012.05427 [hep-ph].
  64. M. D. Diamond and G. Marques-Tavares, “γ𝛾\gammaitalic_γ-Ray Flashes from Dark Photons in Neutron Star Mergers,” Phys. Rev. Lett. 128 no. 21, (2022) 211101, arXiv:2106.03879 [hep-ph].
  65. B.-Q. Lu and C.-W. Chiang, “Probing dark gauge boson with observations from neutron stars,” Phys. Rev. D 105 no. 12, (2022) 123017, arXiv:2107.07692 [hep-ph].
  66. E. Hardy and N. Song, “Listening for dark photon radio signals from the Galactic Center,” Phys. Rev. D 107 no. 11, (2023) 115035, arXiv:2212.09756 [hep-ph].
  67. A. Chaubey, M. K. Jaiswal, and A. K. Ganguly, “Magnetized matter effects on dilaton photon mixing,” Phys. Rev. D 107 no. 2, (2023) 023008, arXiv:2212.07212 [hep-ph].
  68. J.-W. Wang, X.-J. Bi, R.-M. Yao, and P.-F. Yin, “Exploring axion dark matter through radio signals from magnetic white dwarf stars,” Phys. Rev. D 103 no. 11, (2021) 115021, arXiv:2101.02585 [hep-ph].
  69. C. Dessert, A. J. Long, and B. R. Safdi, “X-ray Signatures of Axion Conversion in Magnetic White Dwarf Stars,” Phys. Rev. Lett. 123 no. 6, (2019) 061104, arXiv:1903.05088 [hep-ph].
  70. C. Dessert, D. Dunsky, and B. R. Safdi, “Upper limit on the axion-photon coupling from magnetic white dwarf polarization,” Phys. Rev. D 105 no. 10, (2022) 103034, arXiv:2203.04319 [hep-ph].
  71. J. Jaeckel, P. C. Malta, and J. Redondo, “Decay photons from the axionlike particles burst of type II supernovae,” Phys. Rev. D 98 no. 5, (2018) 055032, arXiv:1702.02964 [hep-ph].
  72. A. Caputo, G. Raffelt, and E. Vitagliano, “Muonic boson limits: Supernova redux,” Phys. Rev. D 105 no. 3, (2022) 035022, arXiv:2109.03244 [hep-ph].
  73. A. De Angelis, G. Galanti, and M. Roncadelli, “Relevance of axion-like particles for very-high-energy astrophysics,” Phys. Rev. D 84 (2011) 105030, arXiv:1106.1132 [astro-ph.HE]. [Erratum: Phys.Rev.D 87, 109903 (2013)].
  74. J. Guo, H.-J. Li, X.-J. Bi, S.-J. Lin, and P.-F. Yin, “Implications of axion-like particles from the Fermi-LAT and H.E.S.S. observations of PG 1553+113 and PKS 2155−--304,” Chin. Phys. C 45 no. 2, (2021) 025105, arXiv:2002.07571 [astro-ph.HE].
  75. H.-J. Li, J.-G. Guo, X.-J. Bi, S.-J. Lin, and P.-F. Yin, “Limits on axion-like particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT,” Phys. Rev. D 103 no. 8, (2021) 083003, arXiv:2008.09464 [astro-ph.HE].
  76. H.-J. Li, X.-J. Bi, and P.-F. Yin, “Searching for axion-like particles with the blazar observations of MAGIC and Fermi-LAT *,” Chin. Phys. C 46 no. 8, (2022) 085105, arXiv:2110.13636 [astro-ph.HE].
  77. J. Davies, M. Meyer, and G. Cotter, “Constraints on axionlike particles from a combined analysis of three flaring Fermi flat-spectrum radio quasars,” Phys. Rev. D 107 no. 8, (2023) 083027, arXiv:2211.03414 [astro-ph.HE].
  78. K. Kohri and H. Kodama, “Axion-Like Particles and Recent Observations of the Cosmic Infrared Background Radiation,” Phys. Rev. D 96 no. 5, (2017) 051701, arXiv:1704.05189 [hep-ph].
  79. H. An, M. Pospelov, and J. Pradler, “New stellar constraints on dark photons,” Phys. Lett. B 725 (2013) 190–195, arXiv:1302.3884 [hep-ph].
  80. J. Redondo and G. Raffelt, “Solar constraints on hidden photons re-visited,” JCAP 1308 (2013) 034, arXiv:1305.2920 [hep-ph].
  81. H. An, M. Pospelov, J. Pradler, and A. Ritz, “New limits on dark photons from solar emission and keV scale dark matter,” Phys. Rev. D 102 (2020) 115022, arXiv:2006.13929 [hep-ph].
  82. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, “Revisiting the bound on axion-photon coupling from Globular Clusters,” Phys. Rev. Lett. 113 no. 19, (2014) 191302, arXiv:1406.6053 [astro-ph.SR].
  83. M. J. Dolan, F. J. Hiskens, and R. R. Volkas, “Advancing globular cluster constraints on the axion-photon coupling,” JCAP 10 (2022) 096, arXiv:2207.03102 [hep-ph].
  84. N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo, and J. Isern, “New axion and hidden photon constraints from a solar data global fit,” JCAP 2015 no. 10, (Oct., 2015) 015–015, arXiv:1501.01639 [astro-ph.SR].
  85. W. DeRocco, S. Wegsman, B. Grefenstette, J. Huang, and K. Van Tilburg, “First Indirect Detection Constraints on Axions in the Solar Basin,” Phys. Rev. Lett. 129 no. 10, (2022) 101101, arXiv:2205.05700 [hep-ph].
  86. H. An, F. P. Huang, J. Liu, and W. Xue, “Radio-frequency Dark Photon Dark Matter across the Sun,” Phys. Rev. Lett. 126 no. 18, (2021) 181102, arXiv:2010.15836 [hep-ph].
  87. M. P. van Haarlem et al., “LOFAR: The LOw-Frequency ARray,” Astron. Astrophys. 556 (2013) A2, arXiv:1305.3550 [astro-ph.IM].
  88. P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. Lazio, “The square kilometre array,” Proceedings of the IEEE 97 no. 8, (2009) 1482–1496.
  89. C. Vocks, G. Mann, F. Breitling, M. Bisi, B. Dabrowski, R. Fallows, P. Gallagher, A. Krankowski, J. Magdalenić, C. Marqué, et al., “Lofar observations of the quiet solar corona,” Astronomy & Astrophysics 614 (2018) A54.
  90. V. De La Luz, A. Lara, E. Mendoza, and M. Shimojo, “3D Simulations of the Quiet Sun Radio Emission at Millimeter and Submillimeter Wavelengths,” Geofisica Internacional 47 (July, 2008) 197–203.
  91. G. Raffelt and L. Stodolsky, “Mixing of the Photon with Low Mass Particles,” Phys. Rev. D37 (1988) 1237.
  92. P. F. de Salas, K. Malhan, K. Freese, K. Hattori, and M. Valluri, “On the estimation of the Local Dark Matter Density using the rotation curve of the Milky Way,” JCAP 10 (2019) 037, arXiv:1906.06133 [astro-ph.GA].
  93. P. F. de Salas and A. Widmark, “Dark matter local density determination: recent observations and future prospects,” Rept. Prog. Phys. 84 no. 10, (2021) 104901, arXiv:2012.11477 [astro-ph.GA].
  94. P. J. McMillan and J. J. Binney, “The uncertainty in Galactic parameters,” Mon. Not. Roy. Astron. Soc. 402 (2010) 934, arXiv:0907.4685 [astro-ph.GA].
  95. J. Bovy, D. W. Hogg, and H.-W. Rix, “Galactic masers and the Milky Way circular velocity,” Astrophys. J. 704 (2009) 1704–1709, arXiv:0907.5423 [astro-ph.GA].
  96. G. Thejappa and R. J. MacDowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” The Astrophysical Journal 676 no. 2, (Apr, 2008) 1338. https://dx.doi.org/10.1086/528835.
  97. E. P. Kontar, X. Chen, N. Chrysaphi, N. L. S. Jeffrey, A. G. Emslie, V. Krupar, M. Maksimovic, M. Gordovskyy, and P. K. Browning, “Anisotropic radio-wave scattering and the interpretation of solar radio emission observations,” The Astrophysical Journal 884 no. 2, (Oct, 2019) 122.
  98. N. H. Bian, A. G. Emslie, and E. P. Kontar, “A fokker–planck framework for studying the diffusion of radio burst waves in the solar corona,” The Astrophysical Journal 873 no. 1, (Mar, 2019) 33. https://dx.doi.org/10.3847/1538-4357/ab0411.
  99. K. Arzner and A. Magun, “Radiowave propagation in a statistically inhomogeneous plasma,” Astronomy and Astrophysics 351 (Nov., 1999) 1165–1189.
  100. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur.Phys.J.C 73, 2501 (2013)].
  101. H. An, S. Ge, W.-Q. Guo, X. Huang, J. Liu, and Z. Lu, “Direct Detection of Dark Photon Dark Matter Using Radio Telescopes,” Phys. Rev. Lett. 130 no. 18, (2023) 181001, arXiv:2207.05767 [hep-ph].
  102. B. Godfrey et al., “Search for dark photon dark matter: Dark E field radio pilot experiment,” Phys. Rev. D 104 no. 1, (2021) 012013, arXiv:2101.02805 [physics.ins-det].
  103. L. Hoang Nguyen, A. Lobanov, and D. Horns, “First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter,” JCAP 1910 no. 10, (2019) 014, arXiv:1907.12449 [hep-ex].
  104. M. L. Kaiser, T. Kucera, J. Davila, O. St Cyr, M. Guhathakurta, and E. Christian, “The stereo mission: An introduction,” Space Science Reviews 136 no. 1, (2008) 5–16.
  105. M. Pulupa, S. D. Bale, J. W. Bonnell, T. A. Bowen, N. Carruth, K. Goetz, D. Gordon, P. R. Harvey, M. Maksimovic, J. C. Martínez-Oliveros, M. Moncuquet, P. Saint-Hilaire, D. Seitz, and D. Sundkvist, “The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing,” Journal of Geophysical Research: Space Physics 122 no. 3, (3, 2017) 2836–2854. https://onlinelibrary.wiley.com/doi/10.1002/2016JA023345.
  106. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun.,” Astrophysical Journal, Suppl. Ser. 45 (Apr., 1981) 635–725.
  107. A. H. Gabriel, “A Magnetic Model of the Solar Transition Region,” Philosophical Transactions of the Royal Society of London Series A 281 no. 1304, (May, 1976) 339–352.
  108. P. Foukal, Solar Astrophysics. A Wiley-Interscience publication. Wiley, 1990.
  109. M. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions. Springer Praxis Books. Springer Berlin Heidelberg, 2006. https://books.google.com/books?id=W7FE5_aowEQC.
  110. J. M. Fontenla, E. H. Avrett, and R. Loeser, “Energy Balance in the Solar Transition Region. I. Hydrostatic Thermal Models with Ambipolar Diffusion,” Astrophysical Journal 355 (June, 1990) 700.
  111. M. J. Aschwanden and L. W. Acton, “Tempurature tomography of the soft x-ray corona: Measurements of electron densities, tempuratures, and differential emission measure distributions above the limb,” The Astrophysical Journal 550 no. 1, (Mar, 2001) 475–492. https://doi.org/10.1086/319711.
  112. E. R. Priest, Solar magneto-hydrodynamics / Eric R. Priest. D. Reidel Pub. Co. ; Sold and distributed in the USA and Canada by Kluwer Boston, Inc Dordrecht, Holland ; Boston : Hingham, MA, 1982.
  113. H. An, S. Ge, and J. Liu, “Solar Radio Emissions and Ultralight Dark Matter,” Universe 9 no. 3, (2023) 142, arXiv:2304.01056 [hep-ph].
  114. B. Bavassano and R. Bruno, “Density fluctuations and turbulent mach numbers in the inner solar wind,” Journal of Geophysical Research: Space Physics 100 no. A6, (1995) 9475–9480.
  115. W. A. Coles and J. K. Harmon, “Propagation Observations of the Solar Wind near the Sun,” Astrophys. J.  337 (Feb., 1989) 1023.
  116. W. A. Coles, W. Liu, J. K. Harmon, and C. L. Martin, “The solar wind density spectrum near the sun: Results from voyager radio measurements,” Journal of Geophysical Research: Space Physics 96 no. A2, (1991) 1745–1755.
  117. N. Brahma, A. Berlin, and K. Schutz, “Photon-dark photon conversion with multiple level crossings,” Phys. Rev. D 108 no. 9, (2023) 095045, arXiv:2308.08586 [hep-ph].
  118. T. W. Shimwell et al., “The LOFAR Two-metre Sky Survey: I. Survey Description and Preliminary Data Release,” Astron. Astrophys. 598 (2017) A104, arXiv:1611.02700 [astro-ph.IM].
  119. E. P. Kontar, S. Yu, A. A. Kuznetsov, A. G. Emslie, B. Alcock, N. L. S. Jeffrey, V. N. Melnik, N. H. Bian, and P. Subramanian, “Imaging Spectroscopy of Solar Radio Burst Fine Structures,” Nature Commun. 8 no. 1, (2017) 1515, arXiv:1708.06505 [astro-ph.SR].
  120. S. K. Solanki, B. Inhester, and M. Schüssler, “The solar magnetic field,” Reports on Progress in Physics 69 no. 3, (2006) 563.
  121. M. J. Aschwanden, “Chapter 11 - The Sun,” in Encyclopedia of the Solar System (Third Edition), T. Spohn, D. Breuer, and T. V. Johnson, eds., pp. 235–259. Elsevier, Boston, third edition ed., 2014. https://www.sciencedirect.com/science/article/pii/B9780124158450000116.
  122. Z. Yang, C. Bethge, H. Tian, S. Tomczyk, R. Morton, G. Del Zanna, S. W. McIntosh, B. B. Karak, S. Gibson, T. Samanta, et al., “Global maps of the magnetic field in the solar corona,” Science 369 no. 6504, (2020) 694–697.
  123. M. Betz, F. Caspers, M. Gasior, M. Thumm, and S. W. Rieger, “First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS),” Phys. Rev. D 88 no. 7, (2013) 075014, arXiv:1310.8098 [physics.ins-det].
  124. K. Ehret et al., “New ALPS Results on Hidden-Sector Lightweights,” Phys. Lett. B 689 (2010) 149–155, arXiv:1004.1313 [hep-ex].
  125. OSQAR Collaboration, R. Ballou et al., “New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall,” Phys. Rev. D 92 no. 9, (2015) 092002, arXiv:1506.08082 [hep-ex].
  126. CAST Collaboration, V. Anastassopoulos et al., “New CAST Limit on the Axion-Photon Interaction,” Nature Phys. 13 (2017) 584–590, arXiv:1705.02290 [hep-ex].
  127. N. Crisosto, P. Sikivie, N. S. Sullivan, D. B. Tanner, J. Yang, and G. Rybka, “ADMX SLIC: Results from a Superconducting L⁢C𝐿𝐶LCitalic_L italic_C Circuit Investigating Cold Axions,” Phys. Rev. Lett. 124 no. 24, (2020) 241101, arXiv:1911.05772 [astro-ph.CO].
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: