Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-separating artificial neural networks for predicting sputtering and thin film deposition of AlN in Ar/N$_2$ discharges on experimental timescales (2301.03524v1)

Published 9 Jan 2023 in cond-mat.mtrl-sci, cs.LG, and physics.plasm-ph

Abstract: Understanding and modeling plasma-surface interactions frame a multi-scale as well as multi-physics problem. Scale-bridging machine learning surface surrogate models have been demonstrated to perceive the fundamental atomic fidelity for the physical vapor deposition of pure metals. However, the immense computational cost of the data-generating simulations render a practical application with predictions on relevant timescales impracticable. This issue is resolved in this work for the sputter deposition of AlN in Ar/N$_2$ discharges by developing a scheme that populates the parameter spaces effectively. Hybrid reactive molecular dynamics / time-stamped force-bias Monte Carlo simulations of randomized plasma-surface interactions / diffusion processes are used to setup a physics-separating artificial neural network. The application of this generic machine learning model to a specific experimental reference case study enables the systematic analysis of the particle flux emission as well as underlying system state (e.g., composition, mass density, stress, point defect structure) evolution within process times of up to 45 minutes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. P. J. Kelly and R. D. Arnell, Vacuum 56, 159 (2000).
  2. J. T. Gudmundsson, Plasma Sources Science and Technology 29, 113001 (2020), publisher: IOP Publishing.
  3. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, New York, USA, 1994).
  4. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, Hoboken, USA, 2005).
  5. W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed. (Wiley, Hoboken, USA, 2013).
  6. S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
  7. M. W. Thompson, Philos. Mag. 18, 377 (1968).
  8. P. Sigmund, Phys. Rev. 187, 768 (1969a).
  9. P. Sigmund, Phys. Rev. 184, 383 (1969b).
  10. R. Anirudh, R. Archibald, M. S. Asif, M. M. Becker, S. Benkadda, P.-T. Bremer, R. H. S. Budé, C. S. Chang, L. Chen, R. M. Churchill, J. Citrin, J. A. Gaffney, A. Gainaru, W. Gekelman, T. Gibbs, S. Hamaguchi, C. Hill, K. Humbird, S. Jalas, S. Kawaguchi, G.-H. Kim, M. Kirchen, S. Klasky, J. L. Kline, K. Krushelnick, B. Kustowski, G. Lapenta, W. Li, T. Ma, N. J. Mason, A. Mesbah, C. Michoski, T. Munson, I. Murakami, H. N. Najm, K. E. J. Olofsson, S. Park, J. L. Peterson, M. Probst, D. Pugmire, B. Sammuli, K. Sawlani, A. Scheinker, D. P. Schissel, R. J. Shalloo, J. Shinagawa, J. Seong, B. K. Spears, J. Tennyson, J. Thiagarajan, C. M. Ticoş, J. Trieschmann, J. van Dijk, B. Van Essen, P. Ventzek, H. Wang, J. T. L. Wang, Z. Wang, K. Wende, X. Xu, H. Yamada, T. Yokoyama,  and X. Zhang, “2022 Review of Data-Driven Plasma Science,”  (2022), arXiv:2205.15832 [physics].
  11. T. Gergs, T. Mussenbrock,  and J. Trieschmann, “Physics-separating artificial neural networks for predicting initial stages of Al sputtering and thin film deposition in Ar plasma discharges,”  (2022b), arXiv:2211.04796 [cond-mat].
  12. D. P. Kingma and M. Welling, in Proceedings of the International Conference on Learning Representations (Scottsdale, USA, 2013).
  13. C. Doersch, arXiv:1606.05908 [cs, stat]  (2021).
  14. D. Drabold et al., Physical Review B 71, 054206 (2005).
  15. X. Zhang and D. Drabold, Physical Review B 62, 15695 (2000).
  16. A. Iqbal and F. Mohd-Yasin, Sensors (Basel, Switzerland) 18, 1797 (2018).
  17. A. Stukowski, Modelling and Simulation in Materials Science and Engineering 18, 015012 (2009), publisher: IOP Publishing.
  18. F. Kröger and H. Vink (Academic Press, 1956) pp. 307–435.
  19. K. M. Bal and E. C. Neyts, The Journal of Chemical Physics 141, 204104 (2014), publisher: American Institute of Physics.
  20. S. Plimpton, Journal of Computational Physics 117, 1 (1995).
  21. T. Gergs, T. Mussenbrock,  and J. Trieschmann, “Charge-optimized many-body interaction potential for AlN revisited to explore plasma-surface interactions,”  (2022c), arXiv:2208.11605 [cond-mat, physics:physics].
  22. F. Birch, Physical Review 71, 809 (1947), publisher: American Physical Society.
  23. F. D. Murnaghan, Proceedings of the National Academy of Sciences 30, 244 (1944), publisher: Proceedings of the National Academy of Sciences.
  24. D.-C. Li and I.-H. Wen, Neurocomputing 143, 222 (2014).
  25. H. Zhang, M. Cisse, Y. N. Dauphin,  and D. Lopez-Paz, “mixup: Beyond Empirical Risk Minimization,”  (2018), arXiv:1710.09412 [cs, stat].
  26. D. P. Kingma and J. Ba, in Proceedings of the 3rd International Conference on Learning Representations (San Diego, USA, 2015).
  27. T. Bäck and F. Hoffmeister, Statistics and Computing 4, 51 (1994).
  28. H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Interdisciplinary Systems Research,, Vol. 26 (Birkhäuser,, Basel, 1977).
  29. H.-P. Schwefel, in Preprints of the 31st Annual Meeting of the International Society for General System Research, Vol. 2 (Budapest, Hungary, 1987) pp. 1025–1033.
  30. J. Trieschmann and T. Mussenbrock, J. Appl. Phys. 118, 033302 (2015).
  31. C. Stampfl and C. G. Van de Walle, Physical Review B 65, 155212 (2002), publisher: American Physical Society.
Citations (4)

Summary

We haven't generated a summary for this paper yet.