Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks (2109.01406v2)

Published 3 Sep 2021 in physics.comp-ph, cs.LG, and physics.plasm-ph

Abstract: Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas-phase from the growth/sputtering processes at the bounding surfaces. Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a bare minimum. A machine learning model has recently been shown to overcome this remedy for Ar ions bombarding a Ti-Al composite target. However, the chosen network structure (i.e., a multilayer perceptron) provides approximately 4 million degrees of freedom, which bears the risk of overfitting the relevant dynamics and complicating the model to an unreliable extend. This work proposes a conceptually more sophisticated but parameterwise simplified regression artificial neural network for an extended scenario, considering a variable instead of a single fixed Ti-Al stoichiometry. A convolutional $\beta$-variational autoencoder is trained to reduce the high-dimensional energy-angular distribution of sputtered particles to a latent space representation of only two components. In addition to a primary decoder which is trained to reconstruct the input energy-angular distribution, a secondary decoder is employed to reconstruct the mean energy of incident Ar ions as well as the present Ti-Al composition. The mutual latent space is hence conditioned on these quantities. The trained primary decoder of the variational autoencoder network is subsequently transferred to a regression network, for which only the mapping to the particular latent space has to be learned. While obtaining a competitive performance, the number of degrees of freedom is drastically reduced to 15,111 and 486 parameters for the primary decoder and the remaining regression network, respectively. The underlying methodology is general and can easily be extended to more complex physical descriptions with a minimal amount of data required.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, New York, USA, 1994).
  2. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, Hoboken, USA, 2005).
  3. W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed. (Wiley, Hoboken, USA, 2013).
  4. W. Eckstein and J. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2, 550 (1984).
  5. W. Möller and W. Eckstein, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2, 814 (1984).
  6. D. B. Graves and P. Brault, Journal of Physics D: Applied Physics 42, 194011 (2009).
  7. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations (IOP Publishing, Bristol, UK, 1991).
  8. R. E. Somekh, Journal of Vacuum Science & Technology A 2, 1285 (1984).
  9. J. Trieschmann and T. Mussenbrock, Journal of Applied Physics 118, 033302 (2015).
  10. E. C. Neyts and A. Bogaerts, Theoretical Chemistry Accounts 132, 1320 (2013).
  11. M. W. Thompson, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 18, 377 (1968).
  12. P. Sigmund, Physical Review 187, 768 (1969a).
  13. P. Sigmund, Physical Review 184, 383 (1969b).
  14. S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
  15. D. P. Kingma and M. Welling, in Proceedings of the International Conference on Learning Representations (Scottsdale, USA, 2013).
  16. C. Doersch, arXiv:1606.05908 [cs, stat]  (2021).
  17. D. P. Kingma and J. Ba, in Proceedings of the 3rd International Conference on Learning Representations (San Diego, USA, 2015).
  18. G. E. Hinton and R. R. Salakhutdinov, Science 313, 504 (2006).
  19. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,  and X. Zheng, “TensorFlow: An Open Source Machine Learning Framework for Everyone,”  (2016), https://tensorflow.org/.
  20. F. Chollet and others, “Keras: The Python Deep Learning library,”  (2015), https://keras.io/.
Citations (13)

Summary

We haven't generated a summary for this paper yet.