Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations (1810.04510v1)

Published 10 Oct 2018 in physics.plasm-ph, cs.LG, and physics.comp-ph

Abstract: Thin film processing by means of sputter deposition inherently depends on the interaction of energetic particles with a target surface and the subsequent particle transport. The length and time scales of the underlying physical phenomena span orders of magnitudes. A theoretical description which bridges all time and length scales is not practically possible. Advantage can be taken particularly from the well-separated time scales of the fundamental surface and plasma processes. Initially, surface properties may be calculated from a surface model and stored for a number of representative cases. Subsequently, the surface data may be provided to gas-phase transport simulations via appropriate model interfaces (e.g., analytic expressions or look-up tables) and utilized to define insertion boundary conditions. During run-time evaluation, however, the maintained surface data may prove to be not sufficient. In this case, missing data may be obtained by interpolation (common), extrapolation (inaccurate), or be supplied on-demand by the surface model (computationally inefficient). In this work, a potential alternative is established based on machine learning techniques using artificial neural networks. As a proof of concept, a multilayer perceptron network is trained and verified with sputtered particle distributions obtained from transport of ions in matter based simulations for Ar projectiles bombarding a Ti-Al composite. It is demonstrated that the trained network is able to predict the sputtered particle distributions for unknown, arbitrarily shaped incident ion energy distributions. It is consequently argued that the trained network may be readily used as a machine learning based model interface (e.g., by quasi-continuously sampling the desired sputtered particle distributions from the network), which is sufficiently accurate also in scenarios which have not been previously trained.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. N. Chapman, Glow discharge processes (John Wiley & Sons, Hoboken, USA, 1980).
  2. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, Hoboken, USA, 2005).
  3. T. Makabe and Z. L. Petrovic, Plasma Electronics : Applications in Microelectronic Device Fabrication, 1st ed. (CRC Press, 2006).
  4. P. M. Martin, ed., Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (William Andrew Publishing, Boston, USA, 2010).
  5. M. W. Thompson, Philosophical Magazine 18, 377 (1968).
  6. P. Sigmund, Physical Review 184, 383 (1969a).
  7. P. Sigmund, Physical Review 187, 768 (1969b).
  8. G. Betz and K. Wien, International Journal of Mass Spectrometry and Ion Processes 140, 1 (1994).
  9. M. Stepanova and S. K. Dew, Journal of Vacuum Science and Technology A 19, 2805 (2001).
  10. D. W. Hoffman, Journal of Vacuum Science and Technology A 3, 561 (1985).
  11. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, Germany, 1991).
  12. S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
  13. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations (IOP Publishing, Bristol, UK, 1991).
  14. G. Colonna and A. D’Angola, eds., Plasma Modeling, 1st ed. (IOP Publishing, Bristol, UK, 2016).
  15. R. E. Somekh, Journal of Vacuum Science and Technology A 2, 1285 (1984).
  16. J. Trieschmann and T. Mussenbrock, Journal of Applied Physics 118, 033302 (2015).
  17. W. Eckstein and J. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2, 550 (1984).
  18. W. Möller and W. Eckstein, Nuclear Instruments and Methods in Physics Research Section B 2, 814 (1984).
  19. D. B. Graves and P. Brault, Journal of Physics D: Applied Physics 42, 194011 (2009).
  20. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, New York, USA, 1994).
  21. E. H. Holt and R. E. Haskell, Foundations of plasma dynamics (The Macmillan Company, New York, USA, 1965).
  22. W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed. (Wiley, Hoboken, USA, 2013).
  23. J. L. Murray, Metallurgical Transactions A 19, 243 (1988).
  24. H. M. Urbassek, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Nanometric Phenomena Induced by Laser, Ion and Cluster Beams, 122, 427 (1997).
  25. P. Brault and E. C. Neyts, Catalysis Today Plasmas for enhanced catalytic processes (ISPCEM 2014), 256, 3 (2015).
  26. D. Zwillinger, Standard Mathematical Tables and Formulae, 31st ed. (CRC Press, 2002).
  27. H. K. D. H. Bhadeshia, ISIJ International 39, 966 (1999).
  28. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, UK, 1996).
  29. S. Haykin, Neural Networks and Learning Machines: A Comprehensive Foundation, 3rd ed. (Prentice Hall International, New York, USA, 2008).
  30. Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks, 1st ed. (Addison-Wesley, Reading, USA, 1989).
  31. G. Cybenko, Mathematics of Control, Signals and Systems 2, 303 (1989).
  32. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,  and X. Zheng, “TensorFlow: An Open Source Machine Learning Framework for Everyone,”  (2016), https://tensorflow.org/.
  33. F. Chollet and others, “Keras: The Python Deep Learning library,”  (2015), https://keras.io/.
  34. N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. (John Wiley & Sons, New York, USA, 1998).
Citations (27)

Summary

We haven't generated a summary for this paper yet.