Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Ordering Strategies For Process Discovery Using Synthesis Rules (2301.02182v1)

Published 4 Jan 2023 in cs.DB, cs.FL, and cs.LG

Abstract: Process discovery aims to learn process models from observed behaviors, i.e., event logs, in the information systems.The discovered models serve as the starting point for process mining techniques that are used to address performance and compliance problems. Compared to the state-of-the-art Inductive Miner, the algorithm applying synthesis rules from the free-choice net theory discovers process models with more flexible (non-block) structures while ensuring the same desirable soundness and free-choiceness properties. Moreover, recent development in this line of work shows that the discovered models have compatible quality. Following the synthesis rules, the algorithm incrementally modifies an existing process model by adding the activities in the event log one at a time. As the applications of rules are highly dependent on the existing model structure, the model quality and computation time are significantly influenced by the order of adding activities. In this paper, we investigate the effect of different ordering strategies on the discovered models (w.r.t. fitness and precision) and the computation time using real-life event data. The results show that the proposed ordering strategy can improve the quality of the resulting process models while requiring less time compared to the ordering strategy solely based on the frequency of activities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tsung-Hao Huang (4 papers)
  2. Wil M. P. van der Aalst (116 papers)

Summary

We haven't generated a summary for this paper yet.