Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ReSQueing Parallel and Private Stochastic Convex Optimization (2301.00457v2)

Published 1 Jan 2023 in math.OC, cs.CR, cs.DS, cs.LG, and stat.ML

Abstract: We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d{1/3}\epsilon_{\text{opt}}{-2/3}$ gradient oracle query depth and $d{1/3}\epsilon_{\text{opt}}{-2/3} + \epsilon_{\text{opt}}{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d{-1}, d{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. Given $n$ samples of Lipschitz loss functions, prior works [BFTT19, BFGT20, AFKT21, KLL21] established that if $n \gtrsim d \epsilon_{\text{dp}}{-2}$, $(\epsilon_{\text{dp}}, \delta)$-differential privacy is attained at no asymptotic cost to the SCO utility. However, these prior works all required a superlinear number of gradient queries. We close this gap for sufficiently large $n \gtrsim d2 \epsilon_{\text{dp}}{-3}$, by using ReSQue to design an algorithm with near-linear gradient query complexity in this regime.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.