Parametric "Non-nested" Discriminants for Multiplicities of Univariate Polynomials (2301.00315v3)
Abstract: We consider the problem of complex root classification, i.e., finding the conditions on the coefficients of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that such conditions can be written as conjunctions of several polynomial equations and one inequation in the coefficients. Those polynomials in the coefficients are called discriminants for multiplicities. It is well known that discriminants can be obtained by using repeated parametric gcd's. The resulting discriminants are usually nested determinants, that is, determinants of matrices whose entries are determinants, and so son. In this paper, we give a new type of discriminants which are not based on repeated gcd's. The new discriminants are simpler in that they are non-nested determinants and have smaller maximum degrees.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.