Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Graph Reconstruction and Representation Using Augmented Persistence Diagrams

Published 26 Dec 2022 in cs.CG | (2212.13206v1)

Abstract: Persistent homology is a tool that can be employed to summarize the shape of data by quantifying homological features. When the data is an object in $\mathbb{R}d$, the (augmented) persistent homology transform ((A)PHT) is a family of persistence diagrams, parameterized by directions in the ambient space. A recent advance in understanding the PHT used the framework of reconstruction in order to find finite a set of directions to faithfully represent the shape, a result that is of both theoretical and practical interest. In this paper, we improve upon this result and present an improved algorithm for graph -- and, more generally one-skeleton -- reconstruction. The improvement comes in reconstructing the edges, where we use a radial binary (multi-)search. The binary search employed takes advantage of the fact that the edges can be ordered radially with respect to a reference plane, a feature unique to graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.