Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimal regularized hypothesis testing in statistical inverse problems (2212.12897v2)

Published 25 Dec 2022 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of Inverse Problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in Inverse Problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions we derive a family of tests with prescribed level $\alpha$ and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.