Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sharp and rigid isoperimetric inequality in metric measure spaces with non-negative Ricci curvature (2212.11570v3)

Published 22 Dec 2022 in math.MG and math.FA

Abstract: By using optimal transport theory, we prove a sharp dimension-free isoperimetric inequality involving the volume entropy, in metric measure spaces with non-negative Ricci curvature in the sense of Lott--Sturm--Villani. We show that this isoperimetric inequality is attained by a non-trivial open set, if and only if the space satisfies a certain foliation property. For metric measure spaces with non-negative Riemannian Ricci curvature, we show that the sharp Cheeger constant is achieved by a non-trivial measurable set, if and only if a one-dimensional space is split off. Our isoperimetric inequality and the rigidity theorems are proved in non-smooth framework, but new even in the smooth setting. In particular, our results provide some new understanding of logarithmically concave measures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.