Sharp and rigid isoperimetric inequality in metric measure spaces with non-negative Ricci curvature (2212.11570v3)
Abstract: By using optimal transport theory, we prove a sharp dimension-free isoperimetric inequality involving the volume entropy, in metric measure spaces with non-negative Ricci curvature in the sense of Lott--Sturm--Villani. We show that this isoperimetric inequality is attained by a non-trivial open set, if and only if the space satisfies a certain foliation property. For metric measure spaces with non-negative Riemannian Ricci curvature, we show that the sharp Cheeger constant is achieved by a non-trivial measurable set, if and only if a one-dimensional space is split off. Our isoperimetric inequality and the rigidity theorems are proved in non-smooth framework, but new even in the smooth setting. In particular, our results provide some new understanding of logarithmically concave measures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.