Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity, uniform convexity and Clarkson's inequalities (2212.10955v2)

Published 21 Dec 2022 in math.FA and math.MG

Abstract: We show that the algebra of cylinder functions in the Wasserstein Sobolev space $H{1,q}(\mathcal{P}_p(X,\mathsf{d}), W_{p, \mathsf{d}}, \mathfrak{m})$ generated by a finite and positive Borel measure $\mathfrak{m}$ on the $(p,\mathsf{d})$-Wasserstein space $(\mathcal{P}p(X,\mathsf{d}), W{p, \mathsf{d}})$ on a complete and separable metric space $(X,\mathsf{d})$ is dense in energy. As an application, we prove that, in case the underlying metric space is a separable Banach space $\mathbb{B}$, then the Wasserstein Sobolev space is reflexive (resp.~uniformly convex) if $\mathbb{B}$ is reflexive (resp.~if the dual of $\mathbb{B}$ is uniformly convex). Finally, we also provide sufficient conditions for the validity of Clarkson's type inequalities in the Wasserstein Sobolev space.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.