Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algebraic entropy and a complete classification of path algebras over finite graphs by growth (2212.10912v1)

Published 21 Dec 2022 in math.RA

Abstract: The Gelfand-Kirillov dimension is a well established quantity to classify the growth of infinite dimensional algebras. In this article we introduce the algebraic entropy for path algebras. For the path algebras, Leavitt path algebras and the path algebra of the extended (double) graph, we compare the Gelfand-Kirillov dimension and the entropy. We give a complete classification of path algebras over finite graphs by dimension, Gelfand-Kirillov dimension and algebraic entropy. We show indeed how these three quantities are dependent on cycles inside the graph. Moreover we show that the algebraic entropy is conserved under Morita equivalence. In addition we give several examples of the entropy in path algebras and Leavitt path algebras.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.