Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Stable, Recursive Auxiliary Field Quantum Monte Carlo Algorithm in the Canonical Ensemble: Applications to Thermometry and the Hubbard Model (2212.08654v2)

Published 16 Dec 2022 in cond-mat.str-el, nucl-th, physics.atom-ph, and physics.chem-ph

Abstract: Many experimentally-accessible, finite-sized interacting quantum systems are most appropriately described by the canonical ensemble of statistical mechanics. Conventional numerical simulation methods either approximate them as being coupled to a particle bath, or use projective algorithms which may suffer from non-optimal scaling with system size or large algorithmic prefactors. In this paper, we introduce a highly stable, recursive Auxiliary Field Quantum Monte Carlo approach that can directly simulate systems in the canonical ensemble. We apply the method to the fermion Hubbard model in one and two spatial dimensions in a regime known to exhibit a significant "sign" problem and find improved performance over existing approaches including rapid convergence to ground state expectation values. The effects of excitations above the ground state are quantified using an estimator-agnostic approach including studying the temperature dependence of the purity and overlap fidelity of the canonical and grand canonical density matrices. As an important application, we show that thermometry approaches often exploited in ultra-cold atoms that employ an analysis of the velocity distribution in the grand canonical ensemble may be subject to errors leading to an under-estimation of extracted temperatures with respect to the Fermi temperature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube