2000 character limit reached
Fundamental groups of rationally connected symplectic manifolds (2212.07882v1)
Published 15 Dec 2022 in math.SG
Abstract: We show that the fundamental group of every enumeratively rationally connected closed symplectic manifold is finite. In other words, if a closed symplectic manifold has a non-zero Gromov-Witten invariant with two point insertions, then it has finite fundamental group. We also show that if the spherical homology class associated to such a non-zero Gromov-Witten invariant is holomorphically indecomposable, then the rational second homology of the symplectic manifold has rank one.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.