2000 character limit reached
Variations of the sub-Riemannian distance on Sasakian manifolds with applications to coupling (2212.07715v1)
Published 15 Dec 2022 in math.DG and math.PR
Abstract: On Sasakian manifolds with their naturally occurring sub-Riemannian structure, we consider parallel and mirror maps along geodesics of a taming Riemannian metric. We show that these transport maps have well-defined limits outside the sub-Riemannian cut-locus. Such maps are not related to parallel transport with respect to any connection. We use this map to obtain bounds on the second derivative of the sub-Riemannian distance. As an application, we get some preliminary result on couplings of sub-Riemannian Brownian motions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.