Rearrangement Inequalities on the Lattice Graph (2212.07590v1)
Abstract: The Polya-Szeg\H{o} inequality in $\mathbb{R}n$ states that, given a non-negative function $f:\mathbb{R}{n} \rightarrow \mathbb{R}{}$, its spherically symmetric decreasing rearrangement $f*:\mathbb{R}{n} \rightarrow \mathbb{R}{}$ is `smoother' in the sense of $| \nabla f*|_{Lp} \leq | \nabla f|{Lp}$ for all $1 \leq p \leq \infty$. We study analogues on the lattice grid graph $\mathbb{Z}2$. The spiral rearrangement is known to satisfy the Polya-Szeg\H{o} inequality for $p=1$, the Wang-Wang rearrangement satisfies it for $p=\infty$ and no rearrangement can satisfy it for $p=2$. We develop a robust approach to show that both these rearrangements satisfy the Polya-Szeg\H{o} inequality up to a constant for all $1 \leq p \leq \infty$. In particular, the Wang-Wang rearrangement satisfies $| \nabla f*|{Lp} \leq 2{1/p} | \nabla f|{Lp}$ for all $1 \leq p \leq \infty$. We also show the existence of (many) rearrangements on $\mathbb{Z}d$ such that $| \nabla f*|{Lp} \leq c_d \cdot | \nabla f|_{Lp}$ for all $1 \leq p \leq \infty$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.