Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-level Robust State Estimation for Multi-Area Power Systems Under Bounded Uncertainties (2212.06309v1)

Published 13 Dec 2022 in eess.SY and cs.SY

Abstract: This paper introduces a two-level robust approach to estimate the unknown states of a large-scale power system while the measurements and network parameters are subjected to uncertainties. The bounded data uncertainty (BDU) considered in the power network is a structured uncertainty which is inevitable in practical systems due to error in transmission lines, inaccurate modelling, unmodeled dynamics, parameter variations, and other various reasons. In the proposed approach, the corresponding network is first decomposed into smaller subsystems (areas), and then a two-level algorithm is presented for state estimation. In this algorithm, at the first level, each area uses a weighted least squares (WLS) technique to estimate its own states based on a robust hybrid estimation utilizing phasor measurement units (PMUs), and at the second level, the central coordinator processes all the results from the subareas and gives a robust estimation of the entire system. The simulation results for IEEE 30-bus test system verifies the accuracy and performance of the proposed multi-area robust estimator.

Citations (1)

Summary

We haven't generated a summary for this paper yet.