Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accelerating Dataset Distillation via Model Augmentation

Published 12 Dec 2022 in cs.LG and cs.AI | (2212.06152v2)

Abstract: Dataset Distillation (DD), a newly emerging field, aims at generating much smaller but efficient synthetic training datasets from large ones. Existing DD methods based on gradient matching achieve leading performance; however, they are extremely computationally intensive as they require continuously optimizing a dataset among thousands of randomly initialized models. In this paper, we assume that training the synthetic data with diverse models leads to better generalization performance. Thus we propose two model augmentation techniques, i.e. using early-stage models and parameter perturbation to learn an informative synthetic set with significantly reduced training cost. Extensive experiments demonstrate that our method achieves up to 20x speedup and comparable performance on par with state-of-the-art methods.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.