Papers
Topics
Authors
Recent
2000 character limit reached

Diffusion and robustness of boundary feedback stabilization of hyperbolic systems

Published 9 Dec 2022 in math.OC | (2212.04879v1)

Abstract: We consider the problem of boundary feedback control of single-input-single-output (SISO) one-dimensional linear hyperbolic systems when sensing and actuation are anti-located. The main issue of the output feedback stabilization is that it requires dynamic control laws that include delayed values of the output (directly or through state observers) which may not be robust to infinitesimal uncertainties on the characteristic velocities. The purpose of this paper is to highlight some features of this problem by addressing the feedback stabilization of an unstable open-loop system which is made up of two interconnected transport equations and provided with anti-located boundary sensing and actuation. The main contribution is to show that the robustness of the control against delay uncertainties is recovered as soon as an arbitrary small diffusion is present in the system. Our analysis also reveals that the effect of diffusion on stability is far from being an obvious issue by exhibiting an alternative simple example where the presence of diffusion has a destabilizing effect instead.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.