Papers
Topics
Authors
Recent
Search
2000 character limit reached

Motion and Context-Aware Audio-Visual Conditioned Video Prediction

Published 9 Dec 2022 in cs.CV | (2212.04679v3)

Abstract: The existing state-of-the-art method for audio-visual conditioned video prediction uses the latent codes of the audio-visual frames from a multimodal stochastic network and a frame encoder to predict the next visual frame. However, a direct inference of per-pixel intensity for the next visual frame is extremely challenging because of the high-dimensional image space. To this end, we decouple the audio-visual conditioned video prediction into motion and appearance modeling. The multimodal motion estimation predicts future optical flow based on the audio-motion correlation. The visual branch recalls from the motion memory built from the audio features to enable better long term prediction. We further propose context-aware refinement to address the diminishing of the global appearance context in the long-term continuous warping. The global appearance context is extracted by the context encoder and manipulated by motion-conditioned affine transformation before fusion with features of warped frames. Experimental results show that our method achieves competitive results on existing benchmarks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.