Papers
Topics
Authors
Recent
Search
2000 character limit reached

Implicit causality in GPT-2: a case study

Published 8 Dec 2022 in cs.CL and cs.AI | (2212.04348v1)

Abstract: This case study investigates the extent to which a LLM (GPT-2) is able to capture native speakers' intuitions about implicit causality in a sentence completion task. We first reproduce earlier results (showing lower surprisal values for pronouns that are congruent with either the subject or object, depending on which one corresponds to the implicit causality bias of the verb), and then examine the effects of gender and verb frequency on model performance. Our second study examines the reasoning ability of GPT-2: is the model able to produce more sensible motivations for why the subject VERBed the object if the verbs have stronger causality biases? We also developed a methodology to avoid human raters being biased by obscenities and disfluencies generated by the model.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.