Non-linear fluctuating hydrodynamics for KPZ scaling in isotropic spin chains (2212.03696v5)
Abstract: Finite temperature spin transport in integrable isotropic spin chains is known to be superdiffusive, with dynamical spin correlations that are conjectured to fall into the Kardar-Parisi-Zhang (KPZ) universality class. However, integrable spin chains have time-reversal and parity symmetries that are absent from the KPZ/stochastic Burgers equation, which force higher-order spin fluctuations to deviate from standard KPZ predictions. We put forward a non-linear fluctuating hydrodynamic theory consisting of two coupled stochastic modes: the local spin magnetization and its effective velocity. Our theory fully explains the emergence of anomalous spin dynamics in isotropic chains: it predicts KPZ scaling for the spin structure factor but with a symmetric, quasi-Gaussian, distribution of spin fluctuations. We substantiate our results using matrix-product states calculations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.