Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Deep Large-baseline Homography Estimation with Progressive Equivalence Constraint (2212.02763v1)

Published 6 Dec 2022 in cs.CV

Abstract: Homography estimation is erroneous in the case of large-baseline due to the low image overlay and limited receptive field. To address it, we propose a progressive estimation strategy by converting large-baseline homography into multiple intermediate ones, cumulatively multiplying these intermediate items can reconstruct the initial homography. Meanwhile, a semi-supervised homography identity loss, which consists of two components: a supervised objective and an unsupervised objective, is introduced. The first supervised loss is acting to optimize intermediate homographies, while the second unsupervised one helps to estimate a large-baseline homography without photometric losses. To validate our method, we propose a large-scale dataset that covers regular and challenging scenes. Experiments show that our method achieves state-of-the-art performance in large-baseline scenes while keeping competitive performance in small-baseline scenes. Code and dataset are available at https://github.com/megvii-research/LBHomo.

Citations (9)

Summary

We haven't generated a summary for this paper yet.