Papers
Topics
Authors
Recent
2000 character limit reached

Virtual Element Methods Without Extrinsic Stabilization

Published 4 Dec 2022 in math.NA and cs.NA | (2212.01720v4)

Abstract: Virtual element methods (VEMs) without extrinsic stabilization in arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local $H(\textrm{div})$-conforming macro finite element spaces such that the associated $L2$ projection of the gradient of virtual element functions is computable, and the $L2$ projector has a uniform lower bound on the gradient of virtual element function spaces in $L2$ norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.