Papers
Topics
Authors
Recent
Search
2000 character limit reached

Examples of non-Dini domains with large singular sets

Published 3 Dec 2022 in math.CV, math.AP, and math.CA | (2212.01541v1)

Abstract: Let $u$ be a non-trivial harmonic function in a domain $D\subset \mathbb{R}d$ which vanishes on an open set of the boundary. In a paper, we showed that if $D$ is a $C1$-Dini domain, then within the open set the singular set of $u$, defined as ${X\in \overline{D}: u(X) = 0 = |\nabla u(X)|} $, has finite $(d-2)$-dimensional Hausdorff measure. In this paper, we show that the assumption of $C1$-Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose \textit{singular sets} have infinite $\mathcal{H}{d-2}$-measures.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.