Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Agent Reinforcement Learning with Reward Delays

Published 2 Dec 2022 in cs.MA | (2212.01441v2)

Abstract: This paper considers multi-agent reinforcement learning (MARL) where the rewards are received after delays and the delay time varies across agents and across time steps. Based on the V-learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays. When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate $\tilde{\mathcal{O}}(\frac{H3\sqrt{S\mathcal{T}_K}}{K}+\frac{H3\sqrt{SA}}{\sqrt{K}})$ where $K$ is the number of episodes, $H$ is the planning horizon, $S$ is the size of the state space, $A$ is the size of the largest action space, and $\mathcal{T}_K$ is the measure of total delay formally defined in the paper. Moreover, our algorithm is extended to cases with infinite delays through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.