Papers
Topics
Authors
Recent
2000 character limit reached

Super-resolution of positive near-colliding point sources

Published 1 Dec 2022 in eess.IV and eess.SP | (2212.00536v1)

Abstract: In this paper, we analyze the capacity of super-resolution of one-dimensional positive sources. In particular, we consider the same setting as in [arXiv:1904.09186v2 [math.NA]] and generalize the results there to the case of super-resolving positive sources. To be more specific, we consider resolving $d$ positive point sources with $p \leqslant d$ nodes closely spaced and forming a cluster, while the rest of the nodes are well separated. Similarly to [arXiv:1904.09186v2 [math.NA]], our results show that when the noise level $\epsilon \lesssim \mathrm{SRF}{-2 p+1}$, where $\mathrm{SRF}=(\Omega \Delta){-1}$ with $\Omega$ being the cutoff frequency and $\Delta$ the minimal separation between the nodes, the minimax error rate for reconstructing the cluster nodes is of order $\frac{1}{\Omega} \mathrm{SRF}{2 p-2} \epsilon$, while for recovering the corresponding amplitudes $\left{a_j\right}$ the rate is of order $\mathrm{SRF}{2 p-1} \epsilon$. For the non-cluster nodes, the corresponding minimax rates for the recovery of nodes and amplitudes are of order $\frac{\epsilon}{\Omega}$ and $\epsilon$, respectively. Our numerical experiments show that the Matrix Pencil method achieves the above optimal bounds when resolving the positive sources.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.