Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-Emphasizing Network for Continuous Sign Language Recognition (2211.17081v1)

Published 30 Nov 2022 in cs.CV

Abstract: Hand and face play an important role in expressing sign language. Their features are usually especially leveraged to improve system performance. However, to effectively extract visual representations and capture trajectories for hands and face, previous methods always come at high computations with increased training complexity. They usually employ extra heavy pose-estimation networks to locate human body keypoints or rely on additional pre-extracted heatmaps for supervision. To relieve this problem, we propose a self-emphasizing network (SEN) to emphasize informative spatial regions in a self-motivated way, with few extra computations and without additional expensive supervision. Specifically, SEN first employs a lightweight subnetwork to incorporate local spatial-temporal features to identify informative regions, and then dynamically augment original features via attention maps. It's also observed that not all frames contribute equally to recognition. We present a temporal self-emphasizing module to adaptively emphasize those discriminative frames and suppress redundant ones. A comprehensive comparison with previous methods equipped with hand and face features demonstrates the superiority of our method, even though they always require huge computations and rely on expensive extra supervision. Remarkably, with few extra computations, SEN achieves new state-of-the-art accuracy on four large-scale datasets, PHOENIX14, PHOENIX14-T, CSL-Daily, and CSL. Visualizations verify the effects of SEN on emphasizing informative spatial and temporal features. Code is available at https://github.com/hulianyuyy/SEN_CSLR

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com