A universal variational framework for parabolic equations and systems (2211.17000v3)
Abstract: We propose a variational approach to solve Cauchy problems for parabolic equations and systems independently of regularity theory for solutions. This produces a universal and conceptually simple construction of fundamental solution operators (also called propagators) for which we prove ${L}2$ off-diagonal estimates, which is new under our assumptions. In the special case of systems for which pointwise local bounds hold for weak solutions, this provides Gaussian upper bound for the corresponding fundamental solution. In particular, we obtain a new proof of Aronson's estimates for real equations. The scheme is general enough to allow systems with higher order elliptic parts on full space or second order elliptic parts on Sobolev spaces with boundary conditions. Another new feature is that the control on lower order coefficients is within critical mixed time-space Lebesgue spaces or even mixed Lorentz spaces.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.