Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Constructive proofs for localized radial solutions of semilinear elliptic systems on $\mathbb{R}^d$ (2211.16445v2)

Published 29 Nov 2022 in math.AP

Abstract: Ground state solutions of elliptic problems have been analyzed extensively in the theory of partial differential equations, as they represent fundamental spatial patterns in many model equations. While the results for scalar equations, as well as certain specific classes of elliptic systems, are comprehensive, much less is known about these localized solutions in generic systems of nonlinear elliptic equations. In this paper we present a general method to prove constructively the existence of localized radially symmetric solutions of elliptic systems on $\mathbb{R}d$. Such solutions are essentially described by systems of non-autonomous ordinary differential equations. We study these systems using dynamical systems theory and computer-assisted proof techniques, combining a suitably chosen Lyapunov-Perron operator with a Newton-Kantorovich type theorem. We demonstrate the power of this methodology by proving specific localized radial solutions of the cubic Klein-Gordon equation on $\mathbb{R}3$, the Swift-Hohenberg equation on $\mathbb{R}2$, and a three-component FitzHugh-Nagumo system on $\mathbb{R}2$. These results illustrate that ground state solutions in a wide range of elliptic systems are tractable through constructive proofs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.