Real-time Blind Deblurring Based on Lightweight Deep-Wiener-Network (2211.16356v3)
Abstract: In this paper, we address the problem of blind deblurring with high efficiency. We propose a set of lightweight deep-wiener-network to finish the task with real-time speed. The Network contains a deep neural network for estimating parameters of wiener networks and a wiener network for deblurring. Experimental evaluations show that our approaches have an edge on State of the Art in terms of inference times and numbers of parameters. Two of our models can reach a speed of 100 images per second, which is qualified for real-time deblurring. Further research may focus on some real-world applications of deblurring with our models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.