Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli Filtering (2211.16041v2)
Abstract: Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $\mathcal{O}(T(P+M))$ complexity, where $T$ is the number of iterations of the algorithm, $P$ and $M$ are the number hypothesized objects and measurements. This innovation enables the GLMB filter implementation to be reduced from an $\mathcal{O}(TP{2}M)$ complexity to $\mathcal{O}(T(P+M+\log T)+PM)$. Moreover, the proposed framework provides the flexibility for trade-offs between tracking performance and computational load. Convergence of the proposed Gibbs sampler is established, and numerical studies are presented to validate the proposed GLMB filter implementation.
- R. P. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–1178, 2003.
- M. Beard, B. T. Vo, and B.-N. Vo, “A solution for large-scale multi-object tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2754–2769, 2020.
- R. Mahler, “PHD filters of higher order in target number,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 4, pp. 1523–1543, 2007.
- B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object conjugate priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460–3475, 2013.
- B.-N. Vo and B.-T. Vo, “A multi-scan labeled random finite set model for multi-object state estimation,” IEEE Trans. Signal Process., vol. 67, no. 19, pp. 4948–4963, 2019.
- F. Papi, B.-N. Vo, B.-T. Vo, C. Fantacci, and M. Beard, “Generalized labeled multi-Bernoulli approximation of multi-object densities,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5487–5497, 2015.
- M. Beard, B.-T. Vo, B.-N. Vo, and S. Arulampalam, “Void probabilities and Cauchy-Schwarz divergence for generalized labeled multi-Bernoulli models,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5047–5061, 2017.
- B.-N. Vo, B.-T. Vo, and M. Beard, “Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 67, no. 23, pp. 5952–5967, 2019.
- D. Moratuwage, B.-N. Vo, B.-T. Vo, and C. Shim, “Multi-scan multi-sensor multi-object state estimation,” IEEE Trans. Signal Process., vol. 70, pp. 5429–5442, 2022.
- S. Li, W. Yi, R. Hoseinnezhad, B. Wang, and L. Kong, “Multiobject tracking for generic observation model using labeled random finite sets,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 368–383, 2017.
- T. T. D. Nguyen, B.-N. Vo, B.-T. Vo, D. Y. Kim, and Y. S. Choi, “Tracking cells and their lineages via labeled random finite sets,” IEEE Trans. Signal Process., vol. 69, pp. 5611–5626, 2021.
- J. Ong, B.-T. Vo, B.-N. Vo, D. Y. Kim, and S. Nordholm, “A Bayesian filter for multi-view 3D multi-object tracking with occlusion handling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2246–2263, 2022.
- A. Trezza, D. J. Bucci, and P. K. Varshney, “Multi-sensor joint adaptive birth sampler for labeled random finite set tracking,” IEEE Trans. Signal Process., vol. 70, pp. 1010–1025, 2022.
- H. Van Nguyen, H. Rezatofighi, B.-N. Vo, and D. C. Ranasinghe, “Online UAV path planning for joint detection and tracking of multiple radio-tagged objects,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5365–5379, 2019.
- B. Wang, W. Yi, S. Li, M. R. Morelande, L. Kong, and X. Yang, “Distributed multi-target tracking via generalized multi-Bernoulli random finite sets,” in Proc. IEEE Int. Conf. Inf. Fusion, 2015, pp. 253–261.
- S. Li, W. Yi, R. Hoseinnezhad, G. Battistelli, B. Wang, and L. Kong, “Robust distributed fusion with labeled random finite sets,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 278–293, 2017.
- S. Li, G. Battistelli, L. Chisci, W. Yi, B. Wang, and L. Kong, “Computationally efficient multi-agent multi-object tracking with labeled random finite sets,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 260–275, 2018.
- M. Herrmann, C. Hermann, and M. Buchholz, “Distributed implementation of the centralized generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 69, pp. 5159–5174, 2021.
- H. Deusch, S. Reuter, and K. Dietmayer, “The labeled multi-Bernoulli SLAM filter,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1561–1565, 2015.
- A. K. Gostar, T. Rathnayake, R. Tennakoon, A. Bab-Hadiashar, G. Battistelli, L. Chisci, and R. Hoseinnezhad, “Cooperative sensor fusion in centralized sensor networks using Cauchy-Schwarz divergence,” Signal Process., vol. 167, p. 107278, 2020.
- A. K. Gostar, T. Rathnayake, R. Tennakoon, A. Bab-Hadiashar, G. Battistelli, L. Chisci, and R. Hoseinnezhad, “Centralized cooperative sensor fusion for dynamic sensor network with limited field-of-view via labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 69, pp. 878–891, 2020.
- W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback et al., “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Nati. Acad. Sci., vol. 114, no. 22, pp. 5647–5652, 2017.
- J. Ong, B. T. Vo, S. E. Nordholm, B. N. Vo, D. Moratuwage, and C. Shim, “Audio-visual based online multi-source separation,” IEEE/ACM Trans. on Audio, Speech, Lang. Process., 2022.
- K. G. Murty, “An algorithm for ranking all the assignments in order of increasing cost,” Operations Res., vol. 16, no. 3, pp. 682–687, 1968.
- M. L. Miller, H. S. Stone, and I. J. Cox, “Optimizing Murty’s ranked assignment method,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 3, pp. 851–862, 1997.
- C. R. Pedersen, L. R. Nielsen, and K. A. Andersen, “An algorithm for ranking assignments using reoptimization,” Computers & Operations Research, vol. 35, no. 11, pp. 3714–3726, 2008.
- B.-N. Vo, B.-T. Vo, and H. G. Hoang, “An efficient implementation of the generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1975–1987, 2016.
- S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., no. 6, pp. 721–741, 1984.
- B. Yang, J. Wang, and W. Wang, “An efficient approximate implementation for labeled random finite set filtering,” Signal Process., vol. 150, pp. 215–227, 2018.
- L. M. Wolf and M. Baum, “Deterministic Gibbs sampling for data association in multi-object tracking,” in Proc. IEEE Int. Conf. Multi. Fusion Integ. Intell. Syst., 2020, pp. 291–296.
- S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3246–3260, 2014.
- J. Y. Yu, A.-A. Saucan, M. Coates, and M. Rabbat, “Algorithms for the multi-sensor assignment problem in the δ𝛿\deltaitalic_δ-generalized labeled multi-Bernoulli filter,” in Proc. IEEE Int. Works. Comp. Advan. Multi-Sensor Adapt. Process., 2017, pp. 1–5.
- A.-A. Saucan and P. K. Varshney, “Distributed cross-entropy δ𝛿\deltaitalic_δ-GLMB filter for multi-sensor multi-target tracking,” in Proc. IEEE Int. Conf. Inf. Fusion, 2018, pp. 1559–1566.
- D. M. Nguyen, H. A. Le Thi, and T. Pham Dinh, “Solving the multidimensional assignment problem by a cross-entropy method,” J. Combinatorial Optim., vol. 27, no. 4, pp. 808–823, 2014.
- G. Zanella and G. Roberts, “Scalable importance tempering and Bayesian variable selection,” J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.), vol. 81, no. 3, pp. 489–517, 2019.
- X. Wang, R. Hoseinnezhad, A. K. Gostar, T. Rathnayake, B. Xu, and A. Bab-Hadiashar, “Multi-sensor control for multi-object Bayes filters,” Signal Process., vol. 142, pp. 260–270, 2018.
- H. Van Nguyen, H. Rezatofighi, B.-N. Vo, and D. C. Ranasinghe, “Multi-objective multi-agent planning for jointly discovering and tracking mobile objects,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 05, 2020, pp. 7227–7235.
- S. Panicker, A. K. Gostar, A. Bab-Hadiashar, and R. Hoseinnezhad, “Tracking of targets of interest using labeled multi-Bernoulli filter with multi-sensor control,” Signal Process., vol. 171, p. 107451, 2020.
- W. Wu, H. Sun, Y. Cai, and J. Xiong, “MM-GLMB filter-based sensor control for tracking multiple maneuvering targets hidden in the Doppler blind zone,” IEEE Trans. Signal Process., vol. 68, pp. 4555–4567, 2020.
- G. Casella and E. I. George, “Explaining the Gibbs sampler,” Amer. Statistician, vol. 46, no. 3, pp. 167–174, 1992.
- G. O. Roberts and J. S. Rosenthal, “On convergence rates of Gibbs samplers for uniform distributions,” Ann. Appl. Probability, vol. 8, pp. 1291–1302, 1998.
- B. He, C. De Sa, I. Mitliagkas, and C. Ré, “Scan order in Gibbs sampling: models in which it matters and bounds on how much,” in Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc., 2016.
- C. Bélisle, “Slow convergence of the Gibbs sampler,” Can. J. Statist., vol. 26, no. 4, pp. 629–641, 1998.
- G. O. Roberts and S. K. Sahu, “Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 59, no. 2, pp. 291–317, 1997.
- P. Diaconis, K. Khare, and L. Saloff-Coste, “Gibbs sampling, exponential families and orthogonal polynomials,” Stat. Sci., vol. 23, no. 2, pp. 151–178, 2008.
- R. Gramacy, R. Samworth, and R. King, “Importance tempering,” Statist. Comput., vol. 20, no. 1, pp. 1–7, 2010.
- J. Griffin, K. Łatuszyński, and M. Steel, “In search of lost mixing time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p,” Biometrika, vol. 108, no. 1, pp. 53–69, 2021.
- Q. Zhou and A. Smith, “Rapid convergence of informed importance tempering,” in Int. Conf. Artif. Intell. Statist., 2022, pp. 10 939–10 965.
- S. T. Tokdar and R. E. Kass, “Importance sampling: a review,” Wiley Interdisciplinary Rev.: Comput. Statist., vol. 2, no. 1, pp. 54–60, 2010.
- D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance evaluation of multi-object filters,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, 2008.
- S. Reuter, A. Danzer, M. Stübler, A. Scheel, and K. Granström, “A fast implementation of the labeled multi-Bernoulli filter using Gibbs sampling,” in Proc. IEEE Intell. Vehicl. Symp., 2017, pp. 765–772.
- G. O. Roberts and A. F. Smith, “Simple conditions for the convergence of the gibbs sampler and metropolis-hastings algorithms,” Stoch. Processes Appl., vol. 49, no. 2, pp. 207–216, 1994.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.