Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli Filtering (2211.16041v2)

Published 29 Nov 2022 in stat.ML, eess.SP, and stat.CO

Abstract: Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $\mathcal{O}(T(P+M))$ complexity, where $T$ is the number of iterations of the algorithm, $P$ and $M$ are the number hypothesized objects and measurements. This innovation enables the GLMB filter implementation to be reduced from an $\mathcal{O}(TP{2}M)$ complexity to $\mathcal{O}(T(P+M+\log T)+PM)$. Moreover, the proposed framework provides the flexibility for trade-offs between tracking performance and computational load. Convergence of the proposed Gibbs sampler is established, and numerical studies are presented to validate the proposed GLMB filter implementation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. R. P. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–1178, 2003.
  2. M. Beard, B. T. Vo, and B.-N. Vo, “A solution for large-scale multi-object tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2754–2769, 2020.
  3. R. Mahler, “PHD filters of higher order in target number,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 4, pp. 1523–1543, 2007.
  4. B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object conjugate priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460–3475, 2013.
  5. B.-N. Vo and B.-T. Vo, “A multi-scan labeled random finite set model for multi-object state estimation,” IEEE Trans. Signal Process., vol. 67, no. 19, pp. 4948–4963, 2019.
  6. F. Papi, B.-N. Vo, B.-T. Vo, C. Fantacci, and M. Beard, “Generalized labeled multi-Bernoulli approximation of multi-object densities,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5487–5497, 2015.
  7. M. Beard, B.-T. Vo, B.-N. Vo, and S. Arulampalam, “Void probabilities and Cauchy-Schwarz divergence for generalized labeled multi-Bernoulli models,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5047–5061, 2017.
  8. B.-N. Vo, B.-T. Vo, and M. Beard, “Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 67, no. 23, pp. 5952–5967, 2019.
  9. D. Moratuwage, B.-N. Vo, B.-T. Vo, and C. Shim, “Multi-scan multi-sensor multi-object state estimation,” IEEE Trans. Signal Process., vol. 70, pp. 5429–5442, 2022.
  10. S. Li, W. Yi, R. Hoseinnezhad, B. Wang, and L. Kong, “Multiobject tracking for generic observation model using labeled random finite sets,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 368–383, 2017.
  11. T. T. D. Nguyen, B.-N. Vo, B.-T. Vo, D. Y. Kim, and Y. S. Choi, “Tracking cells and their lineages via labeled random finite sets,” IEEE Trans. Signal Process., vol. 69, pp. 5611–5626, 2021.
  12. J. Ong, B.-T. Vo, B.-N. Vo, D. Y. Kim, and S. Nordholm, “A Bayesian filter for multi-view 3D multi-object tracking with occlusion handling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2246–2263, 2022.
  13. A. Trezza, D. J. Bucci, and P. K. Varshney, “Multi-sensor joint adaptive birth sampler for labeled random finite set tracking,” IEEE Trans. Signal Process., vol. 70, pp. 1010–1025, 2022.
  14. H. Van Nguyen, H. Rezatofighi, B.-N. Vo, and D. C. Ranasinghe, “Online UAV path planning for joint detection and tracking of multiple radio-tagged objects,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5365–5379, 2019.
  15. B. Wang, W. Yi, S. Li, M. R. Morelande, L. Kong, and X. Yang, “Distributed multi-target tracking via generalized multi-Bernoulli random finite sets,” in Proc. IEEE Int. Conf. Inf. Fusion, 2015, pp. 253–261.
  16. S. Li, W. Yi, R. Hoseinnezhad, G. Battistelli, B. Wang, and L. Kong, “Robust distributed fusion with labeled random finite sets,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 278–293, 2017.
  17. S. Li, G. Battistelli, L. Chisci, W. Yi, B. Wang, and L. Kong, “Computationally efficient multi-agent multi-object tracking with labeled random finite sets,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 260–275, 2018.
  18. M. Herrmann, C. Hermann, and M. Buchholz, “Distributed implementation of the centralized generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 69, pp. 5159–5174, 2021.
  19. H. Deusch, S. Reuter, and K. Dietmayer, “The labeled multi-Bernoulli SLAM filter,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1561–1565, 2015.
  20. A. K. Gostar, T. Rathnayake, R. Tennakoon, A. Bab-Hadiashar, G. Battistelli, L. Chisci, and R. Hoseinnezhad, “Cooperative sensor fusion in centralized sensor networks using Cauchy-Schwarz divergence,” Signal Process., vol. 167, p. 107278, 2020.
  21. A. K. Gostar, T. Rathnayake, R. Tennakoon, A. Bab-Hadiashar, G. Battistelli, L. Chisci, and R. Hoseinnezhad, “Centralized cooperative sensor fusion for dynamic sensor network with limited field-of-view via labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 69, pp. 878–891, 2020.
  22. W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback et al., “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Nati. Acad. Sci., vol. 114, no. 22, pp. 5647–5652, 2017.
  23. J. Ong, B. T. Vo, S. E. Nordholm, B. N. Vo, D. Moratuwage, and C. Shim, “Audio-visual based online multi-source separation,” IEEE/ACM Trans. on Audio, Speech, Lang. Process., 2022.
  24. K. G. Murty, “An algorithm for ranking all the assignments in order of increasing cost,” Operations Res., vol. 16, no. 3, pp. 682–687, 1968.
  25. M. L. Miller, H. S. Stone, and I. J. Cox, “Optimizing Murty’s ranked assignment method,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 3, pp. 851–862, 1997.
  26. C. R. Pedersen, L. R. Nielsen, and K. A. Andersen, “An algorithm for ranking assignments using reoptimization,” Computers & Operations Research, vol. 35, no. 11, pp. 3714–3726, 2008.
  27. B.-N. Vo, B.-T. Vo, and H. G. Hoang, “An efficient implementation of the generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1975–1987, 2016.
  28. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., no. 6, pp. 721–741, 1984.
  29. B. Yang, J. Wang, and W. Wang, “An efficient approximate implementation for labeled random finite set filtering,” Signal Process., vol. 150, pp. 215–227, 2018.
  30. L. M. Wolf and M. Baum, “Deterministic Gibbs sampling for data association in multi-object tracking,” in Proc. IEEE Int. Conf. Multi. Fusion Integ. Intell. Syst., 2020, pp. 291–296.
  31. S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3246–3260, 2014.
  32. J. Y. Yu, A.-A. Saucan, M. Coates, and M. Rabbat, “Algorithms for the multi-sensor assignment problem in the δ𝛿\deltaitalic_δ-generalized labeled multi-Bernoulli filter,” in Proc. IEEE Int. Works. Comp. Advan. Multi-Sensor Adapt. Process., 2017, pp. 1–5.
  33. A.-A. Saucan and P. K. Varshney, “Distributed cross-entropy δ𝛿\deltaitalic_δ-GLMB filter for multi-sensor multi-target tracking,” in Proc. IEEE Int. Conf. Inf. Fusion, 2018, pp. 1559–1566.
  34. D. M. Nguyen, H. A. Le Thi, and T. Pham Dinh, “Solving the multidimensional assignment problem by a cross-entropy method,” J. Combinatorial Optim., vol. 27, no. 4, pp. 808–823, 2014.
  35. G. Zanella and G. Roberts, “Scalable importance tempering and Bayesian variable selection,” J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.), vol. 81, no. 3, pp. 489–517, 2019.
  36. X. Wang, R. Hoseinnezhad, A. K. Gostar, T. Rathnayake, B. Xu, and A. Bab-Hadiashar, “Multi-sensor control for multi-object Bayes filters,” Signal Process., vol. 142, pp. 260–270, 2018.
  37. H. Van Nguyen, H. Rezatofighi, B.-N. Vo, and D. C. Ranasinghe, “Multi-objective multi-agent planning for jointly discovering and tracking mobile objects,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 05, 2020, pp. 7227–7235.
  38. S. Panicker, A. K. Gostar, A. Bab-Hadiashar, and R. Hoseinnezhad, “Tracking of targets of interest using labeled multi-Bernoulli filter with multi-sensor control,” Signal Process., vol. 171, p. 107451, 2020.
  39. W. Wu, H. Sun, Y. Cai, and J. Xiong, “MM-GLMB filter-based sensor control for tracking multiple maneuvering targets hidden in the Doppler blind zone,” IEEE Trans. Signal Process., vol. 68, pp. 4555–4567, 2020.
  40. G. Casella and E. I. George, “Explaining the Gibbs sampler,” Amer. Statistician, vol. 46, no. 3, pp. 167–174, 1992.
  41. G. O. Roberts and J. S. Rosenthal, “On convergence rates of Gibbs samplers for uniform distributions,” Ann. Appl. Probability, vol. 8, pp. 1291–1302, 1998.
  42. B. He, C. De Sa, I. Mitliagkas, and C. Ré, “Scan order in Gibbs sampling: models in which it matters and bounds on how much,” in Advances in Neural Information Processing Systems, vol. 29.   Curran Associates, Inc., 2016.
  43. C. Bélisle, “Slow convergence of the Gibbs sampler,” Can. J. Statist., vol. 26, no. 4, pp. 629–641, 1998.
  44. G. O. Roberts and S. K. Sahu, “Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 59, no. 2, pp. 291–317, 1997.
  45. P. Diaconis, K. Khare, and L. Saloff-Coste, “Gibbs sampling, exponential families and orthogonal polynomials,” Stat. Sci., vol. 23, no. 2, pp. 151–178, 2008.
  46. R. Gramacy, R. Samworth, and R. King, “Importance tempering,” Statist. Comput., vol. 20, no. 1, pp. 1–7, 2010.
  47. J. Griffin, K. Łatuszyński, and M. Steel, “In search of lost mixing time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p,” Biometrika, vol. 108, no. 1, pp. 53–69, 2021.
  48. Q. Zhou and A. Smith, “Rapid convergence of informed importance tempering,” in Int. Conf. Artif. Intell. Statist., 2022, pp. 10 939–10 965.
  49. S. T. Tokdar and R. E. Kass, “Importance sampling: a review,” Wiley Interdisciplinary Rev.: Comput. Statist., vol. 2, no. 1, pp. 54–60, 2010.
  50. D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance evaluation of multi-object filters,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, 2008.
  51. S. Reuter, A. Danzer, M. Stübler, A. Scheel, and K. Granström, “A fast implementation of the labeled multi-Bernoulli filter using Gibbs sampling,” in Proc. IEEE Intell. Vehicl. Symp., 2017, pp. 765–772.
  52. G. O. Roberts and A. F. Smith, “Simple conditions for the convergence of the gibbs sampler and metropolis-hastings algorithms,” Stoch. Processes Appl., vol. 49, no. 2, pp. 207–216, 1994.
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.