Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BEAR: Physics-Principled Building Environment for Control and Reinforcement Learning (2211.14744v1)

Published 27 Nov 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Recent advancements in reinforcement learning algorithms have opened doors for researchers to operate and optimize building energy management systems autonomously. However, the lack of an easily configurable building dynamical model and energy management task simulation and evaluation platform has arguably slowed the progress in developing advanced and dedicated reinforcement learning (RL) and control algorithms for building operation tasks. Here we propose "BEAR", a physics-principled Building Environment for Control And Reinforcement Learning. The platform allows researchers to benchmark both model-based and model-free controllers using a broad collection of standard building models in Python without co-simulation using external building simulators. In this paper, we discuss the design of this platform and compare it with other existing building simulation frameworks. We demonstrate the compatibility and performance of BEAR with different controllers, including both model predictive control (MPC) and several state-of-the-art RL methods with two case studies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.