The structure of Sidon set systems (2211.14011v2)
Abstract: A family $\mathcal{F}\subset 2G$ of subsets of an abelian group $G$ is a Sidon system if the sumsets $A+B$ with $A,B\in \mathcal{F}$ are pairwise distinct. Cilleruelo, Serra and the author previously proved that the maximum size $F_k(n)$ of a Sidon system consisting of $k$-subsets of the first $n$ positive integers satisfies $C_k n{k-1}\leq F_k(n) \leq \binom{n-1}{k-1}+n-k$ for some constant $C_k$ only depending on $k$. We close the gap by proving an essentially tight structural result that in particular implies $F_k(n)\geq (1-o(1))\binom{n}{k-1}$. We also use this to establish a result about the size of the largest Sidon system in the binomial random family $\binom{[n]}{k}_p$. Extensions to $h$-fold sumsets for any fixed $h\geq 3$ are also obtained.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.