Papers
Topics
Authors
Recent
2000 character limit reached

The structure of Sidon set systems (2211.14011v2)

Published 25 Nov 2022 in math.CO and math.NT

Abstract: A family $\mathcal{F}\subset 2G$ of subsets of an abelian group $G$ is a Sidon system if the sumsets $A+B$ with $A,B\in \mathcal{F}$ are pairwise distinct. Cilleruelo, Serra and the author previously proved that the maximum size $F_k(n)$ of a Sidon system consisting of $k$-subsets of the first $n$ positive integers satisfies $C_k n{k-1}\leq F_k(n) \leq \binom{n-1}{k-1}+n-k$ for some constant $C_k$ only depending on $k$. We close the gap by proving an essentially tight structural result that in particular implies $F_k(n)\geq (1-o(1))\binom{n}{k-1}$. We also use this to establish a result about the size of the largest Sidon system in the binomial random family $\binom{[n]}{k}_p$. Extensions to $h$-fold sumsets for any fixed $h\geq 3$ are also obtained.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.