Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Hybrid Transformer Based Feature Fusion for Self-Supervised Monocular Depth Estimation (2211.11066v1)

Published 20 Nov 2022 in cs.CV

Abstract: With an unprecedented increase in the number of agents and systems that aim to navigate the real world using visual cues and the rising impetus for 3D Vision Models, the importance of depth estimation is hard to understate. While supervised methods remain the gold standard in the domain, the copious amount of paired stereo data required to train such models makes them impractical. Most State of the Art (SOTA) works in the self-supervised and unsupervised domain employ a ResNet-based encoder architecture to predict disparity maps from a given input image which are eventually used alongside a camera pose estimator to predict depth without direct supervision. The fully convolutional nature of ResNets makes them susceptible to capturing per-pixel local information only, which is suboptimal for depth prediction. Our key insight for doing away with this bottleneck is to use Vision Transformers, which employ self-attention to capture the global contextual information present in an input image. Our model fuses per-pixel local information learned using two fully convolutional depth encoders with global contextual information learned by a transformer encoder at different scales. It does so using a mask-guided multi-stream convolution in the feature space to achieve state-of-the-art performance on most standard benchmarks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.