A new infinite family of $σ$-elementary rings (2211.10313v1)
Abstract: A cover of an associative (not necessarily commutative nor unital) ring $R$ is a collection of proper subrings of $R$ whose set-theoretic union equals $R$. If such a cover exists, then the covering number $\sigma(R)$ of $R$ is the cardinality of a minimal cover, and a ring $R$ is called $\sigma$-elementary if $\sigma(R) < \sigma(R/I)$ for every nonzero two-sided ideal $I$ of $R$. In this paper, we provide the first examples of $\sigma$-elementary rings $R$ that have nontrivial Jacobson radical $J$ with $R/J$ noncommutative, and we determine the covering numbers of these rings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.