Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sequential Optimization of CVaR (2211.07288v2)

Published 14 Nov 2022 in math.OC

Abstract: This paper studies optimization of the Conditional Value at Risk (CVaR) for a discounted total-cost Markov Decision Process (MDP) with finite state and action sets. This CVaR optimization problem can be reformulated as a Robust MDP(RMDP) with a compact state space. States in this RMDP are the original states of the problems augmented with tail risk levels, and the Decision Maker (DM) knows only the initial tail risk level at the initial state and time. Thus, in order to find an optimal policy following this approach, the DM needs to solve an RMDP with incomplete state observations because after the first move, the DM observes the states of the system, but the tail risk levels are unknown. This paper shows that for the CVaR optimization problem the corresponding RMDP can be solved by using the methods of convex analysis. This paper introduces the algorithm for computing and implementing an optimal CVaR policy by using the value function for the version of this RMDP with completely observable tail risk levels at all states. This algorithm and the major results of the paper are presented for a more general problem of optimization of sum of a mean and CVaR for possibly different cost functions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube