Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symplectic instanton knot homology (2211.06442v1)

Published 11 Nov 2022 in math.SG and math.GT

Abstract: There have been a number of constructions of Lagrangian Floer homology invariants for $3$-manifolds defined in terms of symplectic character varieties arising from Heegaard splittings. With the aim of establishing an Atiyah-Floer counterpart of Kronheimer and Mrowka's singular instanton homology, we generalize one of these, due to H. Horton, to produce a Lagrangian Floer invariant of a knot or link $K \subset Y$ in a closed, oriented $3$-manifold, which we call symplectic instanton knot homology ($\mathrm{SIK}$). We use a multi-pointed Heegaard diagram to parametrize the gluing together of a pair of handlebodies with properly embedded, trivial arcs to form $(Y, K)$. This specifies a pair of Lagrangian embeddings in the traceless $\mathrm{SU}(2)$-character variety of a multiply punctured Heegaard surface, and we show that this has a well-defined Lagrangian Floer homology. Portions of the proof of its invariance are special cases of Wehrheim and Woodward's results on the quilted Floer homology associated to compositions of so-called elementary tangles, while others generalize their work to certain non-elementary tangles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.