Papers
Topics
Authors
Recent
2000 character limit reached

Periodic solutions to superlinear indefinite planar systems: a topological degree approach (2211.06070v1)

Published 11 Nov 2022 in math.CA

Abstract: We deal with a planar differential system of the form \begin{equation*} \begin{cases} \, u' = h(t,v), \ \, v' = - \lambda a(t) g(u), \end{cases} \end{equation*} where $h$ is $T$-periodic in the first variable and strictly increasing in the second variable, $\lambda>0$, $a$ is a sign-changing $T$-periodic weight function and $g$ is superlinear. Based on the coincidence degree theory, in dependence of $\lambda$, we prove the existence of $T$-periodic solutions $(u,v)$ such that $u(t)>0$ for all $t\in\mathbb{R}$. Our results generalize and unify previous contributions about Butler's problem on positive periodic solutions for second-order differential equations (involving linear or $\phi$-Laplacian-type differential operators).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.