Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Sympletic reduction of the sub-Riemannian geodesic flow for metabelian nilpotent groups (2211.05846v5)

Published 10 Nov 2022 in math.DG, math-ph, math.DS, and math.MP

Abstract: We consider nilpotent Lie groups for which the derived subgroup is abelian. We equip them with subRiemannian metrics and we study the normal Hamiltonian flow on the cotangent bundle. We show a correspondence between normal trajectories and polynomial Hamiltonians in some euclidean space. We use the aforementioned correspondence to give a criterion for the integrability of the normal Hamiltonian flow. As an immediate consequence, we show that in Engel-type groups the flow of the normal Hamiltonian is integrable. For Carnot groups that are semidirect products of two abelian groups, we give a set of conditions that normal trajectories must fulfill to be globally length-minimizing. Our results are based on a symplectic reduction procedure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube