2000 character limit reached
Levinson theorem for discrete Schrödinger operators on the line with matrix potentials having a first moment (2211.05021v1)
Published 9 Nov 2022 in math-ph and math.MP
Abstract: This paper proves new results on spectral and scattering theory for matrix-valued Schr\"odinger operators on the discrete line with non-compactly supported perturbations whose first moments are assumed to exist. In particular, a Levinson theorem is proved, in which a relation between scattering data and spectral properties (bound and half bound states) of the corresponding Hamiltonians is derived. The proof is based on stationary scattering theory with prominent use of Jost solutions at complex energies that are controlled by Volterra-type integral equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.