Papers
Topics
Authors
Recent
2000 character limit reached

Sensitivity analysis of quasi-stationary-distributions (QSDs)

Published 9 Nov 2022 in math.NA, cs.NA, and math.PR | (2211.04641v1)

Abstract: This paper studies the sensitivity analysis of mass-action systems against their diffusion approximations, particularly the dependence on population sizes. As a continuous time Markov chain, a mass-action system can be described by a equation driven by finite many Poisson processes, which has a diffusion approximation that can be pathwisely matched. The magnitude of noise in mass-action systems is proportional to the square root of the molecule count/population, which makes a large class of mass-action systems have quasi-stationary distributions (QSDs) instead of invariant probability measures. In this paper we modify the coupling based technique developed in [8] to estimate an upper bound of the 1-Wasserstein distance between two QSDs. Some numerical results for sensitivity with different population sizes are provided.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.