Papers
Topics
Authors
Recent
2000 character limit reached

A $C^0$ Linear Finite Element Method for a Second Order Elliptic Equation in Non-Divergence Form with Cordes Coefficients

Published 8 Nov 2022 in math.NA and cs.NA | (2211.04037v1)

Abstract: In this paper, we develop a gradient recovery based linear (GRBL) finite element method (FEM) and a Hessian recovery based linear (HRBL) FEM for second order elliptic equations in non-divergence form. The elliptic equation is casted into a symmetric non-divergence weak formulation, in which second order derivatives of the unknown function are involved. We use gradient and Hessian recovery operators to calculate the second order derivatives of linear finite element approximations. Although, thanks to low degrees of freedom (DOF) of linear elements, the implementation of the proposed schemes is easy and straightforward, the performances of the methods are competitive. The unique solvability and the $H2$ seminorm error estimate of the GRBL scheme are rigorously proved. Optimal error estimates in both the $L2$ norm and the $H1$ seminorm have been proved when the coefficient is diagonal, which have been confirmed by numerical experiments. Superconvergence in errors has also been observed. Moreover, our methods can handle computational domains with curved boundaries without loss of accuracy from approximation of boundaries. Finally, the proposed numerical methods have been successfully applied to solve fully nonlinear Monge-Amp`{e}re equations.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.