Lattices, Garside structures and weakly modular graphs (2211.03257v4)
Abstract: In this article we study combinatorial non-positive curvature aspects of various simplicial complexes with natural $\widetilde A_n$ shaped simplicies, including Euclidean buildings of type $\widetilde A_n$ and Cayley graphs of Garside groups and their quotients by the Garside elements. All these examples fit into the more general setting of lattices with order-increasing $\mathbb Z$-actions and the associated lattice quotients proposed in a previous work by the first named author. We show that both the lattice quotients and the lattices themselves give rise to weakly modular graphs, which is a form of combinatorial non-positive curvature. We also show that several other complexes fit into this setting of lattices/lattice quotients, hence our result applies, including Artin complexes of Artin-Tits groups of type $\widetilde A_n$, a class of arc complexes and weak Garside groups arising from a categorical Garside structure in the sense of Bessis. Along the way, we also clarify the relationship between categorical Garside structure, lattices with $\mathbb Z$ action and different classes of complexes studied this article. We use this point of view to describe the first examples of Garside groups with exotic properties, like non-linearity or rigidity results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.