Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Accurate waveform models for gravitational-wave astrophysics: synergetic approaches from analytical relativity (2211.01888v1)

Published 3 Nov 2022 in gr-qc

Abstract: Gravitational-wave (GW) astrophysics is a field in full blossom. Since the landmark detection of GWs from a binary black hole on September 14th 2015, several compact-object binaries have been reported by the LIGO-Virgo collaboration. Such events carry astrophysical and cosmological information ranging from an understanding of how black holes and neutron stars are formed, what neutron stars are composed of, how the Universe expands, and allow testing general relativity in the highly-dynamical strong-field regime. It is the goal of GW astrophysics to extract such information as accurately as possible. Yet, this is only possible if the tools and technology used to detect and analyze GWs are advanced enough. A key aspect of GW searches are waveform models, which encapsulate our best predictions for the gravitational radiation under a certain set of parameters, and that need to be cross-correlated with data to extract GW signals. Waveforms must be very accurate to avoid missing important physics in the data, which might be the key to answer the fundamental questions of GW astrophysics. The continuous improvements of the current LIGO-Virgo detectors, the development of next-generation ground-based detectors such as the Einstein Telescope or the Cosmic Explorer, as well as the development of the Laser Interferometer Space Antenna (LISA), demand accurate waveform models. [Abridged.]

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.