Papers
Topics
Authors
Recent
2000 character limit reached

Normalized solutions for a Choquard equation with exponential growth in $\mathbb{R}^{2}$ (2211.01212v1)

Published 2 Nov 2022 in math.AP

Abstract: In this paper, we study the existence of normalized solutions to the following nonlinear Choquard equation with exponential growth \begin{align*} \left{ \begin{aligned} &-\Delta u+\lambda u=(I_{\alpha}\ast F(u))f(u), \quad \quad \hbox{in }\mathbb{R}{2},\ &\int_{\mathbb{R}{2}}|u|{2}dx=a{2}, \end{aligned} \right. \end{align*} where $a>0$ is prescribed, $\lambda\in \mathbb{R}$, $\alpha\in(0,2)$, $I_{\alpha}$ denotes the Riesz potential, $\ast$ indicates the convolution operator, the function $f(t)$ has exponential growth in $\mathbb{R}{2}$ and $F(t)=\int{t}_{0}f(\tau)d\tau$. Using the Pohozaev manifold and variational methods, we establish the existence of normalized solutions to the above problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.