Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimates for low Steklov eigenvalues of surfaces with several boundary components (2211.01043v4)

Published 2 Nov 2022 in math.DG

Abstract: In this article, we give computable lower bounds for the first non-zero Steklov eigenvalue $\sigma_1$ of a compact connected 2-dimensional Riemannian manifold $M$ with several cylindrical boundary components. These estimates show how the geometry of $M$ away from the boundary affects this eigenvalue. They involve geometric quantities specific to manifolds with boundary such as the extrinsic diameter of the boundary. In a second part, we give lower and upper estimates for the low Steklov eigenvalues of a hyperbolic surface with a geodesic boundary in terms of the length of some families of geodesics. This result is similar to a well known result of Schoen, Wolpert and Yau for Laplace eigenvalues on a closed hyperbolic surface.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Jade Brisson. Problèmes isopérimétriques et isospectralité pour le problème de Steklov. Master’s thesis, Université Laval, Québec, Canada, 2019.
  2. Peter Buser. Über den ersten Eigenwert des Laplace-Operators auf kompakten Flächen. Comment. Math. Helv., 54(3):477–493, 1979.
  3. Peter Buser. On Cheeger’s inequality λ1≥h2/4subscript𝜆1superscriptℎ24\lambda_{1}\geq h^{2}/4italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≥ italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 29–77. Amer. Math. Soc., Providence, R.I., 1980.
  4. Peter Buser. Geometry and spectra of compact Riemann surfaces. Modern Birkhäuser Classics. Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1992 edition.
  5. Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195–199. Princeton Univ. Press, Princeton, N. J., 1970.
  6. Compact manifolds with fixed boundary and large Steklov eigenvalues. Proc. Amer. Math. Soc., 147(9):3813–3827, 2019.
  7. Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. J. Geom. Anal., 29(2):1811–1834, 2019.
  8. Some recent developments on the Steklov eigenvalue problem. Rev. Mat. Complut., 37(1):1–161, 2024.
  9. The Steklov and Laplacian spectra of Riemannian manifolds with boundary. J. Funct. Anal., 278(6):108409, 38, 2020.
  10. The Steklov spectrum and coarse discretizations of manifolds with boundary. Pure and Applied Mathematics Quarterly, 14(2):357–392, 2018.
  11. Daniel Daners. Domain perturbation for linear and semi-linear boundary value problems. In Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., pages 1–81. Elsevier/North-Holland, Amsterdam, 2008.
  12. José F. Escobar. The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal., 150(2):544–556, 1997.
  13. José F. Escobar. An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal., 165(1):101–116, 1999.
  14. Alfred Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser Verlag, Basel, second edition, 2004. With a preface by Vicente Miquel.
  15. Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. Éc. Norm. Supér. (4), 53(1):43–88, 2020.
  16. Pierre Jammes. Une inégalité de Cheeger pour le spectre de Steklov. Annales de l’Institut Fourier, 65(3):1381–1385, 2015.
  17. John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
  18. Lawrence E. Payne. Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal., 1:354–359, 1970.
  19. Hélène Perrin. Lower bounds for the first eigenvalue of the Steklov problem on graphs. Calc. Var. Partial Differential Equations, 58(2):Art. 67, 12, 2019.
  20. Geometric bounds on the low eigenvalues of a compact surface. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 279–285. Amer. Math. Soc., Providence, R.I., 1980.
  21. Changwei Xiong. On the spectra of three Steklov eigenvalue problems on warped product manifolds. J. Geom. Anal., 32(5):Paper No. 153, 35, 2022.
  22. Shing Tung Yau. Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4), 8(4):487–507, 1975.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube