Probabilistic Parking Functions (2211.00536v1)
Abstract: We consider the notion of classical parking functions by introducing randomness and a new parking protocol, as inspired by the work presented in the paper ``Parking Functions: Choose your own adventure,'' (arXiv:2001.04817) by Carlson, Christensen, Harris, Jones, and Rodr\'iguez. Among our results, we prove that the probability of obtaining a parking function, from a length $n$ preference vector, is independent of the probabilistic parameter $p$. We also explore the properties of a preference vector given that it is a parking function and discuss the effect of the probabilistic parameter $p$. Of special interest is when $p=1/2$, where we demonstrate a sharp transition in some parking statistics. We also present several interesting combinatorial consequences of the parking protocol. In particular, we provide a combinatorial interpretation for the array described in OEIS A220884 as the expected number of preference sequences with a particular property related to occupied parking spots, which solves an open problem of Novelli and Thibon posed in 2020 (arXiv:1209.5959). Lastly, we connect our results to other weighted phenomena in combinatorics and provide further directions for research.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.